Using empirical models of species colonization under multiple threatening processes to identify complementary threat-mitigation strategies
Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised...
Saved in:
Published in: | Conservation biology Vol. 30; no. 4; pp. 867 - 882 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Blackwell Publishing Ltd
01-08-2016
Wiley Periodicals Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised a way to prioritize threat mitigation at a regional scale with empirical evidence based on predicted changes to population dynamics—information that is lacking in most threat-management prioritization frameworks that rely on expert elicitation. We used dynamic occupancy models to investigate the effects of multiple threats (tree cover, grazing, and presence of an hyperaggressive competitor, the Noisy Miner (Manorina melanocephala) on bird-population dynamics in an endangered woodland community in southeastern Australia. The 3 threatening processes had different effects on different species. We used predicted patch-colonization probabilities to estimate the benefit to each species of removing one or more threats. We then determined the complementary set of threat-mitigation strategies that maximized colonization of all species while ensuring that redundant actions with little benefit were avoided. The single action that resulted in the highest colonization was increasing tree cover, which increased patch colonization by 5% and 11% on average across all species and for declining species, respectively. Combining Noisy Miner control with increasing tree cover increased species colonization by 10% and 19% on average for all species and for declining species respectively, and was a higher priority than changing grazing regimes. Guidance for prioritizing threat mitigation is critical in the face of cumulative threatening processes. By incorporating population dynamics in prioritization of threat management, our approach helps ensure funding is not wasted on ineffective management programs that target the wrong threats or species. Las estrategias para priorizar las acciones de conservación están ganando popularidad. Sin embargo, existe evidencia empírica limitada sobre cuáles especies pueden beneficiarse más de la mitigación de amenazas y sobre cuál combinación de amenazas, si son mitigadas simultáneamente, tendría mejores resultados para la biodiversidad. Diseñamos una forma de priorizar la mitigación de amenazas a escala regional con evidencia empírica basada en los cambios pronosticados para las dinámicas poblacionales información faltante en la mayoría de los marcos de trabajo de priorización que dependen de la obtención de información de expertos. Usamos modelos de ocupación dinámica para investigar los efectos de las amenazas múltiples (cobertura de árboles, pastoreo y presencia de un competidor hiperagresivo, Manorina melanocephala) sobre las dinámicas poblacionales de las aves de una comunidad boscosa en peligro de extinción en el sureste de Australia. Los tres procesos amenazantes tuvieron diferentes efectos sobre diferentes especies. Usamos probabilidades de colonización de fragmentos para estimar el beneficio de remover una o más amenazas para cada especie. Después determinamos el conjunto complementario de estrategias de mitigación de amenazas que maximizaron la colonización de todas las especies, a la vez que aseguraban que se evitaran las acciones redundantes y con pocos beneficios. La única acción que resultó en la mayor colonización fue el incremento de la cobertura de árboles, lo que aumentó la colonización del fragmento en un 5 % y 11 % en promedio para todas las especies y para las especies en declive, respectivamente. Combinar el control de Manorina melanocephala con el incremento de la cobertura de árboles aumentó la colonización de especies en un 10 % y 19 % en promedio para todas las especies y para las especies en declive, respectivamente, y fue una mayor prioridad que cambiar los regímenes de pastoreo. La guía es crítica para la priorización de mitigación de amenazas de frente a los procesos amenazantes acumulativos. Si incorporamos las dinámicas poblacionales en la priorización del manejo de amenazas, nuestra estrategia ayuda a asegurar que el financiamiento no se desperdicie en programas de manejo poco efectivos que enfoquen las amenazas o las especies incorrectas. |
---|---|
AbstractList | Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised a way to prioritize threat mitigation at a regional scale with empirical evidence based on predicted changes to population dynamics-information that is lacking in most threat-management prioritization frameworks that rely on expert elicitation. We used dynamic occupancy models to investigate the effects of multiple threats (tree cover, grazing, and presence of an hyperaggressive competitor, the Noisy Miner (Manorina melanocephala) on bird-population dynamics in an endangered woodland community in southeastern Australia. The 3 threatening processes had different effects on different species. We used predicted patch-colonization probabilities to estimate the benefit to each species of removing one or more threats. We then determined the complementary set of threat-mitigation strategies that maximized colonization of all species while ensuring that redundant actions with little benefit were avoided. The single action that resulted in the highest colonization was increasing tree cover, which increased patch colonization by 5% and 11% on average across all species and for declining species, respectively. Combining Noisy Miner control with increasing tree cover increased species colonization by 10% and 19% on average for all species and for declining species respectively, and was a higher priority than changing grazing regimes. Guidance for prioritizing threat mitigation is critical in the face of cumulative threatening processes. By incorporating population dynamics in prioritization of threat management, our approach helps ensure funding is not wasted on ineffective management programs that target the wrong threats or species. Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised a way to prioritize threat mitigation at a regional scale with empirical evidence based on predicted changes to population dynamics--information that is lacking in most threat-management prioritization frameworks that rely on expert elicitation. We used dynamic occupancy models to investigate the effects of multiple threats (tree cover, grazing, and presence of an hyperaggressive competitor, the Noisy Miner (Manorina melanocephala) on bird-population dynamics in an endangered woodland community in southeastern Australia. The 3 threatening processes had different effects on different species. We used predicted patch-colonization probabilities to estimate the benefit to each species of removing one or more threats. We then determined the complementary set of threat-mitigation strategies that maximized colonization of all species while ensuring that redundant actions with little benefit were avoided. The single action that resulted in the highest colonization was increasing tree cover, which increased patch colonization by 5% and 11% on average across all species and for declining species, respectively. Combining Noisy Miner control with increasing tree cover increased species colonization by 10% and 19% on average for all species and for declining species respectively, and was a higher priority than changing grazing regimes. Guidance for prioritizing threat mitigation is critical in the face of cumulative threatening processes. By incorporating population dynamics in prioritization of threat management, our approach helps ensure funding is not wasted on ineffective management programs that target the wrong threats or species. El Uso de Modelos Empíricos de la Colonización de Especies bajo Procesos Múltiples de Amenazas para Identificar Estrategias Complementarias de Mitigación de Amenazas Resumen Las estrategias para priorizar las acciones de conservación están ganando popularidad. Sin embargo, existe evidencia empírica limitada sobre cuáles especies pueden beneficiarse más de la mitigación de amenazas y sobre cuál combinación de amenazas, si son mitigadas simultáneamente, tendría mejores resultados para la biodiversidad. Diseñamos una forma de priorizar la mitigación de amenazas a escala regional con evidencia empírica basada en los cambios pronosticados para las dinámicas poblacionales - información faltante en la mayoría de los marcos de trabajo de priorización que dependen de la obtención de información de expertos. Usamos modelos de ocupación dinámica para investigar los efectos de las amenazas múltiples (cobertura de árboles, pastoreo y presencia de un competidor hiperagresivo, Manorina melanocephala) sobre las dinámicas poblacionales de las aves de una comunidad boscosa en peligro de extinción en el sureste de Australia. Los tres procesos amenazantes tuvieron diferentes efectos sobre diferentes especies. Usamos probabilidades de colonización de fragmentos para estimar el beneficio de remover una o más amenazas para cada especie. Después determinamos el conjunto complementario de estrategias de mitigación de amenazas que maximizaron la colonización de todas las especies, a la vez que aseguraban que se evitaran las acciones redundantes y con pocos beneficios. La única acción que resultó en la mayor colonización fue el incremento de la cobertura de árboles, lo que aumentó la colonización del fragmento en un 5 % y 11 % en promedio para todas las especies y para las especies en declive, respectivamente. Combinar el control de Manorina melanocephala con el incremento de la cobertura de árboles aumentó la colonización de especies en un 10 % y 19 % en promedio para todas las especies y para las especies en declive, respectivamente, y fue una mayor prioridad que cambiar los regímenes de pastoreo. La guía es crítica para la priorización de mitigación de amenazas de frente a los procesos amenazantes acumulativos. Si incorporamos las dinámicas poblacionales en la priorización del manejo de amenazas, nuestra estrategia ayuda a asegurar que el financiamiento no se desperdicie en programas de manejo poco efectivos que enfoquen las amenazas o las especies incorrectas. Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised a way to prioritize threat mitigation at a regional scale with empirical evidence based on predicted changes to population dynamics—information that is lacking in most threat‐management prioritization frameworks that rely on expert elicitation. We used dynamic occupancy models to investigate the effects of multiple threats (tree cover, grazing, and presence of an hyperaggressive competitor, the Noisy Miner (Manorina melanocephala) on bird‐population dynamics in an endangered woodland community in southeastern Australia. The 3 threatening processes had different effects on different species. We used predicted patch‐colonization probabilities to estimate the benefit to each species of removing one or more threats. We then determined the complementary set of threat‐mitigation strategies that maximized colonization of all species while ensuring that redundant actions with little benefit were avoided. The single action that resulted in the highest colonization was increasing tree cover, which increased patch colonization by 5% and 11% on average across all species and for declining species, respectively. Combining Noisy Miner control with increasing tree cover increased species colonization by 10% and 19% on average for all species and for declining species respectively, and was a higher priority than changing grazing regimes. Guidance for prioritizing threat mitigation is critical in the face of cumulative threatening processes. By incorporating population dynamics in prioritization of threat management, our approach helps ensure funding is not wasted on ineffective management programs that target the wrong threats or species. Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised a way to prioritize threat mitigation at a regional scale with empirical evidence based on predicted changes to population dynamics-information that is lacking in most threat-management prioritization frameworks that rely on expert elicitation. We used dynamic occupancy models to investigate the effects of multiple threats (tree cover, grazing, and presence of an hyperaggressive competitor, the Noisy Miner (Manorina melanocephala) on bird-population dynamics in an endangered woodland community in southeastern Australia. The 3 threatening processes had different effects on different species. We used predicted patch-colonization probabilities to estimate the benefit to each species of removing one or more threats. We then determined the complementary set of threat-mitigation strategies that maximized colonization of all species while ensuring that redundant actions with little benefit were avoided. The single action that resulted in the highest colonization was increasing tree cover, which increased patch colonization by 5% and 11% on average across all species and for declining species, respectively. Combining Noisy Miner control with increasing tree cover increased species colonization by 10% and 19% on average for all species and for declining species respectively, and was a higher priority than changing grazing regimes. Guidance for prioritizing threat mitigation is critical in the face of cumulative threatening processes. By incorporating population dynamics in prioritization of threat management, our approach helps ensure funding is not wasted on ineffective management programs that target the wrong threats or species.Original Abstract: El Uso de Modelos Empiricos de la Colonizacion de Especies bajo Procesos Multiples de Amenazas para Identificar Estrategias Complementarias de Mitigacion de Amenazas Resumen Las estrategias para priorizar las acciones de conservacion estan ganando popularidad. Sin embargo, existe evidencia empirica limitada sobre cuales especies pueden beneficiarse mas de la mitigacion de amenazas y sobre cual combinacion de amenazas, si son mitigadas simultaneamente, tendria mejores resultados para la biodiversidad. Disenamos una forma de priorizar la mitigacion de amenazas a escala regional con evidencia empirica basada en los cambios pronosticados para las dinamicas poblacionales - informacion faltante en la mayoria de los marcos de trabajo de priorizacion que dependen de la obtencion de informacion de expertos. Usamos modelos de ocupacion dinamica para investigar los efectos de las amenazas multiples (cobertura de arboles, pastoreo y presencia de un competidor hiperagresivo,Manorina melanocephala ) sobre las dinamicas poblacionales de las aves de una comunidad boscosa en peligro de extincion en el sureste de Australia. Los tres procesos amenazantes tuvieron diferentes efectos sobre diferentes especies. Usamos probabilidades de colonizacion de fragmentos para estimar el beneficio de remover una o mas amenazas para cada especie. Despues determinamos el conjunto complementario de estrategias de mitigacion de amenazas que maximizaron la colonizacion de todas las especies, a la vez que aseguraban que se evitaran las acciones redundantes y con pocos beneficios. La unica accion que resulto en la mayor colonizacion fue el incremento de la cobertura de arboles, lo que aumento la colonizacion del fragmento en un 5 % y 11 % en promedio para todas las especies y para las especies en declive, respectivamente. Combinar el control deManorina melanocephalacon el incremento de la cobertura de arboles aumento la colonizacion de especies en un 10 % y 19 % en promedio para todas las especies y para las especies en declive, respectivamente, y fue una mayor prioridad que cambiar los regimenes de pastoreo. La guia es critica para la priorizacion de mitigacion de amenazas de frente a los procesos amenazantes acumulativos. Si incorporamos las dinamicas poblacionales en la priorizacion del manejo de amenazas, nuestra estrategia ayuda a asegurar que el financiamiento no se desperdicie en programas de manejo poco efectivos que enfoquen las amenazas o las especies incorrectas. Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised a way to prioritize threat mitigation at a regional scale with empirical evidence based on predicted changes to population dynamics—information that is lacking in most threat‐management prioritization frameworks that rely on expert elicitation. We used dynamic occupancy models to investigate the effects of multiple threats (tree cover, grazing, and presence of an hyperaggressive competitor, the Noisy Miner (Manorina melanocephala) on bird‐population dynamics in an endangered woodland community in southeastern Australia. The 3 threatening processes had different effects on different species. We used predicted patch‐colonization probabilities to estimate the benefit to each species of removing one or more threats. We then determined the complementary set of threat‐mitigation strategies that maximized colonization of all species while ensuring that redundant actions with little benefit were avoided. The single action that resulted in the highest colonization was increasing tree cover, which increased patch colonization by 5% and 11% on average across all species and for declining species, respectively. Combining Noisy Miner control with increasing tree cover increased species colonization by 10% and 19% on average for all species and for declining species respectively, and was a higher priority than changing grazing regimes. Guidance for prioritizing threat mitigation is critical in the face of cumulative threatening processes. By incorporating population dynamics in prioritization of threat management, our approach helps ensure funding is not wasted on ineffective management programs that target the wrong threats or species. El Uso de Modelos Empíricos de la Colonización de Especies bajo Procesos Múltiples de Amenazas para Identificar Estrategias Complementarias de Mitigación de Amenazas Resumen Las estrategias para priorizar las acciones de conservación están ganando popularidad. Sin embargo, existe evidencia empírica limitada sobre cuáles especies pueden beneficiarse más de la mitigación de amenazas y sobre cuál combinación de amenazas, si son mitigadas simultáneamente, tendría mejores resultados para la biodiversidad. Diseñamos una forma de priorizar la mitigación de amenazas a escala regional con evidencia empírica basada en los cambios pronosticados para las dinámicas poblacionales – información faltante en la mayoría de los marcos de trabajo de priorización que dependen de la obtención de información de expertos. Usamos modelos de ocupación dinámica para investigar los efectos de las amenazas múltiples (cobertura de árboles, pastoreo y presencia de un competidor hiperagresivo, Manorina melanocephala) sobre las dinámicas poblacionales de las aves de una comunidad boscosa en peligro de extinción en el sureste de Australia. Los tres procesos amenazantes tuvieron diferentes efectos sobre diferentes especies. Usamos probabilidades de colonización de fragmentos para estimar el beneficio de remover una o más amenazas para cada especie. Después determinamos el conjunto complementario de estrategias de mitigación de amenazas que maximizaron la colonización de todas las especies, a la vez que aseguraban que se evitaran las acciones redundantes y con pocos beneficios. La única acción que resultó en la mayor colonización fue el incremento de la cobertura de árboles, lo que aumentó la colonización del fragmento en un 5 % y 11 % en promedio para todas las especies y para las especies en declive, respectivamente. Combinar el control de Manorina melanocephala con el incremento de la cobertura de árboles aumentó la colonización de especies en un 10 % y 19 % en promedio para todas las especies y para las especies en declive, respectivamente, y fue una mayor prioridad que cambiar los regímenes de pastoreo. La guía es crítica para la priorización de mitigación de amenazas de frente a los procesos amenazantes acumulativos. Si incorporamos las dinámicas poblacionales en la priorización del manejo de amenazas, nuestra estrategia ayuda a asegurar que el financiamiento no se desperdicie en programas de manejo poco efectivos que enfoquen las amenazas o las especies incorrectas. Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised a way to prioritize threat mitigation at a regional scale with empirical evidence based on predicted changes to population dynamics—information that is lacking in most threat-management prioritization frameworks that rely on expert elicitation. We used dynamic occupancy models to investigate the effects of multiple threats (tree cover, grazing, and presence of an hyperaggressive competitor, the Noisy Miner (Manorina melanocephala) on bird-population dynamics in an endangered woodland community in southeastern Australia. The 3 threatening processes had different effects on different species. We used predicted patch-colonization probabilities to estimate the benefit to each species of removing one or more threats. We then determined the complementary set of threat-mitigation strategies that maximized colonization of all species while ensuring that redundant actions with little benefit were avoided. The single action that resulted in the highest colonization was increasing tree cover, which increased patch colonization by 5% and 11% on average across all species and for declining species, respectively. Combining Noisy Miner control with increasing tree cover increased species colonization by 10% and 19% on average for all species and for declining species respectively, and was a higher priority than changing grazing regimes. Guidance for prioritizing threat mitigation is critical in the face of cumulative threatening processes. By incorporating population dynamics in prioritization of threat management, our approach helps ensure funding is not wasted on ineffective management programs that target the wrong threats or species. Las estrategias para priorizar las acciones de conservación están ganando popularidad. Sin embargo, existe evidencia empírica limitada sobre cuáles especies pueden beneficiarse más de la mitigación de amenazas y sobre cuál combinación de amenazas, si son mitigadas simultáneamente, tendría mejores resultados para la biodiversidad. Diseñamos una forma de priorizar la mitigación de amenazas a escala regional con evidencia empírica basada en los cambios pronosticados para las dinámicas poblacionales información faltante en la mayoría de los marcos de trabajo de priorización que dependen de la obtención de información de expertos. Usamos modelos de ocupación dinámica para investigar los efectos de las amenazas múltiples (cobertura de árboles, pastoreo y presencia de un competidor hiperagresivo, Manorina melanocephala) sobre las dinámicas poblacionales de las aves de una comunidad boscosa en peligro de extinción en el sureste de Australia. Los tres procesos amenazantes tuvieron diferentes efectos sobre diferentes especies. Usamos probabilidades de colonización de fragmentos para estimar el beneficio de remover una o más amenazas para cada especie. Después determinamos el conjunto complementario de estrategias de mitigación de amenazas que maximizaron la colonización de todas las especies, a la vez que aseguraban que se evitaran las acciones redundantes y con pocos beneficios. La única acción que resultó en la mayor colonización fue el incremento de la cobertura de árboles, lo que aumentó la colonización del fragmento en un 5 % y 11 % en promedio para todas las especies y para las especies en declive, respectivamente. Combinar el control de Manorina melanocephala con el incremento de la cobertura de árboles aumentó la colonización de especies en un 10 % y 19 % en promedio para todas las especies y para las especies en declive, respectivamente, y fue una mayor prioridad que cambiar los regímenes de pastoreo. La guía es crítica para la priorización de mitigación de amenazas de frente a los procesos amenazantes acumulativos. Si incorporamos las dinámicas poblacionales en la priorización del manejo de amenazas, nuestra estrategia ayuda a asegurar que el financiamiento no se desperdicie en programas de manejo poco efectivos que enfoquen las amenazas o las especies incorrectas. |
Author | Florance, Daniel Tulloch, Ayesha I.T. Mortelliti, Alessio Kay, Geoffrey M. Lindenmayer, David |
Author_xml | – sequence: 1 givenname: Ayesha I.T. surname: Tulloch fullname: Tulloch, Ayesha I.T. email: ayesha.tulloch@anu.edu.au organization: Fenner School of Environment and Society, The Australian National University, ACT, 2601, Canberra, Australia – sequence: 2 givenname: Alessio surname: Mortelliti fullname: Mortelliti, Alessio organization: Fenner School of Environment and Society, The Australian National University, 2601, Canberra, ACT, Australia – sequence: 3 givenname: Geoffrey M. surname: Kay fullname: Kay, Geoffrey M. organization: Fenner School of Environment and Society, The Australian National University, ACT, 2601, Canberra, Australia – sequence: 4 givenname: Daniel surname: Florance fullname: Florance, Daniel organization: Fenner School of Environment and Society, The Australian National University, ACT, 2601, Canberra, Australia – sequence: 5 givenname: David surname: Lindenmayer fullname: Lindenmayer, David organization: Fenner School of Environment and Society, The Australian National University, ACT, 2601, Canberra, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26711716$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcFu1DAQQC1URLcLF-6gSFwqpBQ7WSf2sazKUlTaS6vlZjn27OIlsYPtCJZP4KtxyLZIHBC-jKx58zzjOUFH1llA6DnBZySdN8o15owUVV08QjNCizIndcmP0AwzxnLGeHGMTkLYYYw5JYsn6DixhNSkmqGfd8HYbQZdb7xRss06p6ENmdtkoQdlIGTKtc6aHzIaZ7PBavBZN7TR9C1k8bMHGcGOjt47BSGkiugyo8FGs9mn6i6BXbpJvz_weWei2U7CEH0SbNNDT9HjjWwDPDvEObp7d3G7fJ9f3awul-dXuaIFLnJdLBqsGNM1AcUl5oRzTWVFGlhgIDUGUDLFkjZcNkzRkiqiMS4rjaGkupyj08mbGv46QIiiM0FB20oLbgiCMMxSddL-D1rUZV1WVUJf_YXu3OBtGmSkCK84TegcvZ4o5V0IHjai96ZLPyMIFuMyxbhM8XuZCX55UA5NB_oBvd9eAsgEfDMt7P-hEsubt5f30hdTzS5E5_84F3VF8GLsMJ_yJkT4_pCX_ouo0qhUrK9X4vbj6tNqff1BrMtfLZDHsA |
CitedBy_id | crossref_primary_10_1016_j_biocon_2016_10_009 crossref_primary_10_1016_j_agee_2023_108765 crossref_primary_10_1111_cobi_13686 crossref_primary_10_1111_1365_2664_13427 crossref_primary_10_1038_s41559_017_0457_3 crossref_primary_10_1002_eap_1846 crossref_primary_10_1002_eap_1953 crossref_primary_10_1111_icad_12705 crossref_primary_10_1017_S0376892922000388 crossref_primary_10_1111_ecog_03079 crossref_primary_10_1007_s10530_023_03200_6 crossref_primary_10_1016_j_omega_2019_102147 crossref_primary_10_1007_s11625_021_00920_3 crossref_primary_10_1016_j_pecon_2018_03_003 crossref_primary_10_1111_csp2_13023 crossref_primary_10_1080_01584197_2022_2106875 crossref_primary_10_1111_1365_2664_13320 crossref_primary_10_1111_2041_210X_14220 crossref_primary_10_1111_cobi_12779 crossref_primary_10_1111_oik_06583 |
Cites_doi | 10.1038/35012251 10.1071/MU09109 10.1007/s00442-015-3323-5 10.1111/1365-2664.12500 10.1111/cobi.12523 10.1111/j.1365-2664.2005.01012.x 10.1111/ecog.02143 10.1890/080170 10.1111/j.1461-0248.2008.01243.x 10.1371/journal.pone.0128027 10.1046/j.1442-9993.2002.01223.x 10.1111/ddi.12128 10.1111/j.1755-263X.2008.00021.x 10.1093/biomet/78.3.691 10.1111/1365-2664.12441 10.18637/jss.v043.i10 10.1371/journal.pone.0050872 10.1111/j.1523-1739.2008.01043.x 10.1111/j.1365-2664.2005.01098.x 10.1098/rspb.2004.2724 10.1111/j.1472-4642.2011.00747.x 10.1111/cobi.12551 10.1890/140022 10.1016/j.biocon.2006.08.005 10.1890/13-0711.1 10.1111/ddi.12064 10.1890/10-2340.1 10.1111/j.1461-0248.2011.01673.x 10.1016/j.landurbplan.2008.12.007 10.1016/j.biocon.2009.12.018 10.1016/j.agee.2006.12.012 10.1111/j.1523-1739.2006.00624.x 10.1098/rstb.2011.0108 10.1111/cobi.12413 10.1890/02-3090 10.1111/cobi.12092 |
ContentType | Journal Article |
Copyright | 2016 Society for Conservation Biology 2016 Society for Conservation Biology. 2016, Society for Conservation Biology |
Copyright_xml | – notice: 2016 Society for Conservation Biology – notice: 2016 Society for Conservation Biology. – notice: 2016, Society for Conservation Biology |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7X8 |
DOI | 10.1111/cobi.12672 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Sustainability Science Abstracts Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1523-1739 |
EndPage | 882 |
ExternalDocumentID | 4109291801 10_1111_cobi_12672 26711716 COBI12672 24761047 ark_67375_WNG_TMGXGWNJ_W |
Genre | article Journal Article |
GeographicLocations | Australia |
GeographicLocations_xml | – name: Australia |
GroupedDBID | --- -DZ .-4 .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29F 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AAUTI AAXRX AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPLY ABPPZ ABPVW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACNCT ACPOU ACPRK ACPVT ACSCC ACSTJ ACXBN ACXQS ADACV ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADUKH ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AGUYK AHBTC AHXOZ AI. AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG CBGCD COF CS3 CUYZI D-E D-F D0L DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LMP LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OES OIG OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QN7 R.K ROL RSU RX1 SA0 SAMSI SUPJJ TEORI TN5 UB1 UKR UQL V8K VH1 VOH W8V W99 WBKPD WHG WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH XSW YFH YUY YV5 YZZ ZCA ZCG ZO4 ZZTAW ~02 ~IA ~KM ~WT AAJUZ ABCVL ABHUG ABWRO ACXME ADAWD ADDAD AFVGU AGJLS AIRJO CWIXF DWIUU EQZMY AFFDN CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c5202-d24b0c88d71ec9a09199d5a61be40e170eecae1735b9ab8c535c1d0036d0e35d3 |
IEDL.DBID | 33P |
ISSN | 0888-8892 |
IngestDate | Fri Oct 25 02:58:51 EDT 2024 Fri Oct 25 21:08:18 EDT 2024 Tue Nov 19 06:09:21 EST 2024 Thu Nov 21 22:30:20 EST 2024 Wed Oct 16 00:58:07 EDT 2024 Sat Aug 24 00:58:52 EDT 2024 Fri Feb 02 07:30:04 EST 2024 Wed Oct 30 09:53:07 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | grazing regimes priorización de acciones de conservación amenazas acumulativas pérdida de hábitat ecological dynamics modelo de ocupación de fragmento dinámico birds manejo de amenazas prioritarias dinámicas ecológicas priority threat management aves conservation action prioritization habitat loss regímenes de pastoreo dynamic patch occupancy model cumulative threats |
Language | English |
License | 2016 Society for Conservation Biology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5202-d24b0c88d71ec9a09199d5a61be40e170eecae1735b9ab8c535c1d0036d0e35d3 |
Notes | Further details on the study area, model fitting, and optimization methodology (Appendix S1) and estimated colonization rates for every species under alternative threat-mitigation strategies and benefit scenarios (Appendix S2) are available online. The authors are solely responsible for the content and functionality of these materials. Queries (other than absence of the material) should be directed to the corresponding author. istex:FB35D352D7BB24BC1B557B0124D99F8C231EAB59 ark:/67375/WNG-TMGXGWNJ-W ArticleID:COBI12672 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26711716 |
PQID | 1801969527 |
PQPubID | 36794 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1808735199 proquest_miscellaneous_1802737366 proquest_journals_1801969527 crossref_primary_10_1111_cobi_12672 pubmed_primary_26711716 wiley_primary_10_1111_cobi_12672_COBI12672 jstor_primary_24761047 istex_primary_ark_67375_WNG_TMGXGWNJ_W |
PublicationCentury | 2000 |
PublicationDate | 2016-08 20160801 August 2016 2016-08-00 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Conservation biology |
PublicationTitleAlternate | Conservation Biology |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Periodicals Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Periodicals Inc |
References | Dorrough J, Moll J, Crosthwaite J. 2007. Can intensification of temperate Australian livestock production systems save land for native biodiversity? Agriculture, Ecosystems & Environment 121:222-232. Fiske I, Chandler R. 2011. Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software 43:1-23. Nagelkerke NJ. 1991. A note on a general definition of the coefficient of determination. Biometrika 78:691-692. Duncan DH, Dorrough JW. 2009. Historical and current land use shape landscape restoration options in the Australian wheat and sheep farming zone. Landscape and Urban Planning 91:124-132. Burgman MA, Keith D, Hopper SD, Widyatmoko D, Drill C. 2007. Threat syndromes and conservation of the Australian flora. Biological Conservation 134:73-82. Field SA, Tyre AJ, Possingham HP. 2002. Estimating bird species richness: How should repeat surveys be organized in time? Austral Ecology 27:624-629. Evans MC, Possingham HP, Wilson KA. 2011. What to do in the face of multiple threats? Incorporating dependencies within a return on investment framework for conservation. Diversity and Distributions 17:437-450. Firn J, Martin TG, Chades I, Walters B, Hayes J, Nicol S, Carwardine J. 2015. Priority threat management of non-native plants to maintain ecosystem integrity across heterogeneous landscapes. Journal of Applied Ecology 52:1135-1144. Burnham KP, Anderson DR. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, New York. Ruscoe WA, et al. 2011. Unexpected consequences of control: competitive vs.predator release in a four-species assemblage of invasive mammals. Ecology Letters 14:1035-1042. Mortelliti A, Lindenmayer DB. 2015. Effects of landscape transformation on bird colonization and extinction patterns in a large-scale, long-term natural experiment. Conservation Biology 29:1314-1326. Isaac NJB, Cowlishaw G. 2004. How species respond to multiple extinction threats. Proceedings of the Royal Society of London B: Biological Sciences 271:1135-1141. Darling ES, Côté IM. 2008. Quantifying the evidence for ecological synergies. Ecology Letters 11:1278-1286. Santika T, McAlpine CA, Lunney D, Wilson KA, Rhodes JR. 2015. Assessing spatio-temporal priorities for species' recovery in broad-scale dynamic landscapes. Journal of Applied Ecology 52:832-840. Auerbach NA, Tulloch AIT, Possingham HP. 2014. Informed actions: where to cost effectively manage multiple threats to species to maximize return on investment. Ecological Applications 24:1357-1373. Tulloch AIT, Chadès I, Possingham HP. 2013. Accounting for complementarity to maximize monitoring power for species management. Conservation Biology 27:988-999. Tulloch VJD, et al. 2015. Why do we map threats? Linking threat mapping with actions to make better conservation decisions. Frontiers in Ecology and the Environment 13:91-99. Wilson KA, Evans MC, Di Marco M, Green DC, Boitani L, Possingham HP, Chiozza F, Rondinini C. 2011. Prioritizing conservation investments for mammal species globally. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 366:2670-2680. Margules CR, Pressey RL. 2000. Systematic conservation planning. Nature 405:243-253. Visconti P, Pressey RL, Segan DB, Wintle BA. 2010. Conservation planning with dynamic threats: the role of spatial design and priority setting for species' persistence. Biological Conservation 143:756-767. MacKenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AB. 2003. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84:2200-2207. Maron M, Grey MJ, Catterall CP, Major RE, Oliver DL, Clarke MF, Loyn RH, Mac Nally R, Davidson I, Thomson JR. 2013. Avifaunal disarray due to a single despotic species. Diversity and Distributions 19:1468-1479. Auerbach NA, Wilson KA, Tulloch AIT, Rhodes JR, Hanson JO, Possingham HP. 2015. Effects of threat management interactions on conservation priorities. Conservation Biology 29:1626-1635. Fischer J, Sherren K, Stott J, Zerger A, Warren G, Stein J. 2010. Toward landscape-wide conservation outcomes in Australia's temperate grazing region. Frontiers in Ecology and the Environment 8:69-74. Mac Nally R, Bowen M, Howes A, McAlpine CA, Maron M. 2012. Despotic, high-impact species and the subcontinental scale control of avian assemblage structure. Ecology 93:668-678. Chadès I, Nicol S, van Leeuwen S, Walters B, Firn J, Reeson A, Martin TG, Carwardine J. 2015. Benefits of integrating complementarity into priority threat management. Conservation Biology 29:525-536. Lindenmayer DB, Fischer J, Felton A, Crane M, Michael D, Macgregor C, Montague-Drake R, Manning A, Hobbs RJ. 2008. Novel ecosystems resulting from landscape transformation create dilemmas for modern conservation practice. Conservation Letters 1:129-135. Lindenmayer DB, Zammit C, Attwood SJ, Burns E, Shepherd CL, Kay G, Wood J. 2012. A novel and cost-effective monitoring approach for outcomes in an Australian biodiversity conservation incentive program. PLoS ONE 7:e50872. DOI: 10.1371/journal.pone.0050872. Cattarino L, Hermoso V, Carwardine J, Kennard MJ, Linke S. 2015. Multi-Action planning for threat management: a novel approach for the spatial prioritization of conservation actions. PLoS ONE 10: e0128027. DOI: 10.1371/journal.pone.0128027. Ponce-Reyes R, Nicholson E, Baxter PWJ, Fuller RA, Possingham H. 2013. Extinction risk in cloud forest fragments under climate change and habitat loss. Diversity and Distributions 19:518-529. Moilanen A. 2008. Generalized complementarity and mapping of the concepts of systematic conservation planning. Conservation Biology 22:1655-1658. Foster CN, Barton PS, Wood JT, Lindenmayer DB. 2015. Interactive effects of fire and large herbivores on web-building spiders. Oecologia 179:237-248. Benson J. 2008. New South Wales vegetation classification and assessment. Part 2: Plant communities of the NSW Southwestern Slopes Bioregion and update of NSW Western Plains plant communities, Version 2 of the NSWVCA database. Cunninghamia 104:599-673. Mackenzie DI, Royle JA. 2005. Designing occupancy studies: general advice and allocating survey effort. Journal of Applied Ecology 42:1105-1114. Martin TG, Possingham HP. 2005. Predicting the impact of livestock grazing on birds using foraging height data. Journal of Applied Ecology 42:400-408. Watson DM. 2011. A productivity-based explanation for woodland bird declines: poorer soils yield less food. EMU 111:10-18. Martin TG, McIntye S. 2007. Impacts of livestock grazing and tree clearing on birds of woodland and riparian habitats. Conservation Biology 21:504-514. 2015; 13 2013; 27 1991; 78 2007; 121 2015; 52 2015; 10 2010; 143 2005; 42 2014; 24 2008; 104 2008; 11 2002 2011; 14 2011; 17 2008; 1 2011; 111 1999 2002; 27 2013; 19 2012; 93 2007; 134 2011; 366 2015; 29 2009; 91 2015; 179 2004; 271 2000; 405 2011; 43 2016 2008; 22 2012; 7 2007; 21 2003; 84 2010; 8 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Benson J (e_1_2_6_5_1) 2008; 104 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 Balmford A (e_1_2_6_4_1) 1999 Burnham KP (e_1_2_6_7_1) 2002 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 29 start-page: 1626 year: 2015 end-page: 1635 article-title: Effects of threat management interactions on conservation priorities publication-title: Conservation Biology – volume: 179 start-page: 237 year: 2015 end-page: 248 article-title: Interactive effects of fire and large herbivores on web‐building spiders publication-title: Oecologia – volume: 27 start-page: 988 year: 2013 end-page: 999 article-title: Accounting for complementarity to maximize monitoring power for species management publication-title: Conservation Biology – volume: 111 start-page: 10 year: 2011 end-page: 18 article-title: A productivity‐based explanation for woodland bird declines: poorer soils yield less food publication-title: EMU – volume: 366 start-page: 2670 year: 2011 end-page: 2680 article-title: Prioritizing conservation investments for mammal species globally. Philosophical Transactions of the Royal Society of London publication-title: Series B, Biological Sciences – volume: 405 start-page: 243 year: 2000 end-page: 253 article-title: Systematic conservation planning publication-title: Nature – volume: 134 start-page: 73 year: 2007 end-page: 82 article-title: Threat syndromes and conservation of the Australian flora publication-title: Biological Conservation – volume: 19 start-page: 1468 year: 2013 end-page: 1479 article-title: Avifaunal disarray due to a single despotic species publication-title: Diversity and Distributions – volume: 91 start-page: 124 year: 2009 end-page: 132 article-title: Historical and current land use shape landscape restoration options in the Australian wheat and sheep farming zone publication-title: Landscape and Urban Planning – volume: 7 start-page: e50872 year: 2012 article-title: A novel and cost‐effective monitoring approach for outcomes in an Australian biodiversity conservation incentive program publication-title: PLoS ONE – volume: 29 start-page: 1314 year: 2015 end-page: 1326 article-title: Effects of landscape transformation on bird colonization and extinction patterns in a large‐scale, long‐term natural experiment publication-title: Conservation Biology – volume: 11 start-page: 1278 year: 2008 end-page: 1286 article-title: Quantifying the evidence for ecological synergies publication-title: Ecology Letters – volume: 52 start-page: 832 year: 2015 end-page: 840 article-title: Assessing spatio‐temporal priorities for species’ recovery in broad‐scale dynamic landscapes publication-title: Journal of Applied Ecology – volume: 42 start-page: 400 year: 2005 end-page: 408 article-title: Predicting the impact of livestock grazing on birds using foraging height data publication-title: Journal of Applied Ecology – volume: 19 start-page: 518 year: 2013 end-page: 529 article-title: Extinction risk in cloud forest fragments under climate change and habitat loss publication-title: Diversity and Distributions – volume: 84 start-page: 2200 year: 2003 end-page: 2207 article-title: Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly publication-title: Ecology – volume: 14 start-page: 1035 year: 2011 end-page: 1042 article-title: Unexpected consequences of control: competitive vs.predator release in a four‐species assemblage of invasive mammals publication-title: Ecology Letters – year: 2016 – volume: 42 start-page: 1105 year: 2005 end-page: 1114 article-title: Designing occupancy studies: general advice and allocating survey effort publication-title: Journal of Applied Ecology – volume: 104 start-page: 599 year: 2008 end-page: 673 article-title: New South Wales vegetation classification and assessment. Part 2: Plant communities of the NSW Southwestern Slopes Bioregion and update of NSW Western Plains plant communities, Version 2 of the NSWVCA database publication-title: Cunninghamia – volume: 43 start-page: 1 year: 2011 end-page: 23 article-title: Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance publication-title: Journal of Statistical Software – volume: 121 start-page: 222 year: 2007 end-page: 232 article-title: Can intensification of temperate Australian livestock production systems save land for native biodiversity? publication-title: Agriculture, Ecosystems & Environment – volume: 17 start-page: 437 year: 2011 end-page: 450 article-title: What to do in the face of multiple threats? Incorporating dependencies within a return on investment framework for conservation publication-title: Diversity and Distributions – volume: 22 start-page: 1655 year: 2008 end-page: 1658 article-title: Generalized complementarity and mapping of the concepts of systematic conservation planning publication-title: Conservation Biology – volume: 271 start-page: 1135 year: 2004 end-page: 1141 article-title: How species respond to multiple extinction threats publication-title: Proceedings of the Royal Society of London B: Biological Sciences – volume: 8 start-page: 69 year: 2010 end-page: 74 article-title: Toward landscape‐wide conservation outcomes in Australia's temperate grazing region publication-title: Frontiers in Ecology and the Environment – volume: 78 start-page: 691 year: 1991 end-page: 692 article-title: A note on a general definition of the coefficient of determination publication-title: Biometrika – year: 2002 – volume: 1 start-page: 129 year: 2008 end-page: 135 article-title: Novel ecosystems resulting from landscape transformation create dilemmas for modern conservation practice publication-title: Conservation Letters – volume: 29 start-page: 525 year: 2015 end-page: 536 article-title: Benefits of integrating complementarity into priority threat management publication-title: Conservation Biology – volume: 10 start-page: e0128027 year: 2015 article-title: Multi‐Action planning for threat management: a novel approach for the spatial prioritization of conservation actions publication-title: PLoS ONE – volume: 143 start-page: 756 year: 2010 end-page: 767 article-title: Conservation planning with dynamic threats: the role of spatial design and priority setting for species’ persistence publication-title: Biological Conservation – start-page: 1 year: 1999 end-page: 28 – volume: 52 start-page: 1135 year: 2015 end-page: 1144 article-title: Priority threat management of non‐native plants to maintain ecosystem integrity across heterogeneous landscapes publication-title: Journal of Applied Ecology – volume: 24 start-page: 1357 year: 2014 end-page: 1373 article-title: Informed actions: where to cost effectively manage multiple threats to species to maximize return on investment publication-title: Ecological Applications – volume: 27 start-page: 624 year: 2002 end-page: 629 article-title: Estimating bird species richness: How should repeat surveys be organized in time? publication-title: Austral Ecology – volume: 21 start-page: 504 year: 2007 end-page: 514 article-title: Impacts of livestock grazing and tree clearing on birds of woodland and riparian habitats publication-title: Conservation Biology – volume: 13 start-page: 91 year: 2015 end-page: 99 article-title: Why do we map threats? Linking threat mapping with actions to make better conservation decisions publication-title: Frontiers in Ecology and the Environment – volume: 93 start-page: 668 year: 2012 end-page: 678 article-title: Despotic, high‐impact species and the subcontinental scale control of avian assemblage structure publication-title: Ecology – ident: e_1_2_6_25_1 doi: 10.1038/35012251 – ident: e_1_2_6_39_1 doi: 10.1071/MU09109 – ident: e_1_2_6_18_1 doi: 10.1007/s00442-015-3323-5 – ident: e_1_2_6_15_1 doi: 10.1111/1365-2664.12500 – ident: e_1_2_6_30_1 doi: 10.1111/cobi.12523 – ident: e_1_2_6_28_1 doi: 10.1111/j.1365-2664.2005.01012.x – ident: e_1_2_6_37_1 doi: 10.1111/ecog.02143 – ident: e_1_2_6_16_1 doi: 10.1890/080170 – ident: e_1_2_6_10_1 doi: 10.1111/j.1461-0248.2008.01243.x – ident: e_1_2_6_8_1 doi: 10.1371/journal.pone.0128027 – ident: e_1_2_6_14_1 doi: 10.1046/j.1442-9993.2002.01223.x – ident: e_1_2_6_26_1 doi: 10.1111/ddi.12128 – ident: e_1_2_6_20_1 doi: 10.1111/j.1755-263X.2008.00021.x – ident: e_1_2_6_31_1 doi: 10.1093/biomet/78.3.691 – ident: e_1_2_6_34_1 doi: 10.1111/1365-2664.12441 – volume-title: Model selection and multimodel inference: a practical information‐theoretic approach year: 2002 ident: e_1_2_6_7_1 contributor: fullname: Burnham KP – ident: e_1_2_6_17_1 doi: 10.18637/jss.v043.i10 – ident: e_1_2_6_21_1 doi: 10.1371/journal.pone.0050872 – ident: e_1_2_6_29_1 doi: 10.1111/j.1523-1739.2008.01043.x – ident: e_1_2_6_24_1 doi: 10.1111/j.1365-2664.2005.01098.x – ident: e_1_2_6_19_1 doi: 10.1098/rspb.2004.2724 – ident: e_1_2_6_13_1 doi: 10.1111/j.1472-4642.2011.00747.x – ident: e_1_2_6_3_1 doi: 10.1111/cobi.12551 – volume: 104 start-page: 599 year: 2008 ident: e_1_2_6_5_1 article-title: New South Wales vegetation classification and assessment. Part 2: Plant communities of the NSW Southwestern Slopes Bioregion and update of NSW Western Plains plant communities, Version 2 of the NSWVCA database publication-title: Cunninghamia contributor: fullname: Benson J – ident: e_1_2_6_36_1 doi: 10.1890/140022 – start-page: 1 volume-title: Conservation in a changing world year: 1999 ident: e_1_2_6_4_1 contributor: fullname: Balmford A – ident: e_1_2_6_6_1 doi: 10.1016/j.biocon.2006.08.005 – ident: e_1_2_6_2_1 doi: 10.1890/13-0711.1 – ident: e_1_2_6_32_1 doi: 10.1111/ddi.12064 – ident: e_1_2_6_22_1 doi: 10.1890/10-2340.1 – ident: e_1_2_6_33_1 doi: 10.1111/j.1461-0248.2011.01673.x – ident: e_1_2_6_12_1 doi: 10.1016/j.landurbplan.2008.12.007 – ident: e_1_2_6_38_1 doi: 10.1016/j.biocon.2009.12.018 – ident: e_1_2_6_11_1 doi: 10.1016/j.agee.2006.12.012 – ident: e_1_2_6_27_1 doi: 10.1111/j.1523-1739.2006.00624.x – ident: e_1_2_6_40_1 doi: 10.1098/rstb.2011.0108 – ident: e_1_2_6_9_1 doi: 10.1111/cobi.12413 – ident: e_1_2_6_23_1 doi: 10.1890/02-3090 – ident: e_1_2_6_35_1 doi: 10.1111/cobi.12092 |
SSID | ssj0009514 |
Score | 2.3542712 |
Snippet | Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from... |
SourceID | proquest crossref pubmed wiley jstor istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 867 |
SubjectTerms | amenazas acumulativas Animals Australia aves Biodiversity Birds conservation action prioritization Conservation of Natural Resources cumulative threats dinámicas ecológicas dynamic patch occupancy model ecological dynamics Endangered & extinct species Forests grazing regimes habitat loss manejo de amenazas prioritarias Manorina melanocephala modelo de ocupación de fragmento dinámico priority threat management priorización de acciones de conservación pérdida de hábitat regímenes de pastoreo Wildlife conservation |
SummonAdditionalLinks | – databaseName: JSTOR Biological Sciences Collection dbid: JBS link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7RRUhcludCYEFGPA5IgTixY_sIS7eARDmwqHuLnHgqKnabqg-J_gV-NWM7KawEK06J5IllZ-L4m-SbbwCeTa0qUQuTGoMyFaao09ppk1I4RHiDo8tcKGL7RY1P9buhl8l53ufCeFpl4AWGv_gEkOozfJ0LCrYzoQYw0FzEBIU_lHWjgDeFcqnWJu80SD1dp2nr2Suelyq_sOtc9TfwR09A_Bu0vIhUw1ZzfOM_B3kT9jssyd5E59-CKzi_DddidcktnQ2DIvX2DvwMxACG54tZUARhof7NirVT5jMtKVhm3rTPyWQ-sWzJeq4hW3_zyBL9FxS2iIkFdMW6ZbOQ5TvdskBMjzz05bazT89nUb-DOlyte0WKu_D1eHhy9D7tijCkjczpbelyUWeN1k5xbIwleGGMk7bkNYoMucoQG0vHQtbG1rqRhWy48zI3LsNCuuIA9ubtHO8Ds_R2zAS3hCisyAo0tSTw0OCUOhGINoGnvZOqRdTaqPoYxbuyCq5M4EXw387ELr97dpqS1WQ8qk4-jU5Hk_HHapLAQXDSzrD3UAKHvcerbsWuKq6DUpDMqfnJrpnWmv-BYufYboINoT1VlOWlNlr5qocmgXvxafo9gFJxL0-UwMvweF0yy-ro89sP4ezBv6bxEK4TeisjG_EQ9tbLDT6CwcptHocV8gvLag4A priority: 102 providerName: JSTOR |
Title | Using empirical models of species colonization under multiple threatening processes to identify complementary threat-mitigation strategies |
URI | https://api.istex.fr/ark:/67375/WNG-TMGXGWNJ-W/fulltext.pdf https://www.jstor.org/stable/24761047 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.12672 https://www.ncbi.nlm.nih.gov/pubmed/26711716 https://www.proquest.com/docview/1801969527 https://search.proquest.com/docview/1802737366 https://search.proquest.com/docview/1808735199 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fi9QwEA56Ivji7zur5xJRfBAqTds0CfjinXurgqvgyd5bSZssLnLbZbsL7pt_gA_-jf4lzkzavTuQA_GlLXRa0iSTftN-8w1jz6ZWFV7nJjbGyzg3WRVXTpsYwiHAG8K7xFER289qfKLfDFEm51WfCxP0IbYf3NAzaL1GB7dVe87J66aavRRpoXABhjCB8jeyT-cUd4OwN4R4sdYm7bRJkcZzdumFt9E17NjvPTHxb5DzIoKlV9DRrf9r_G12s4Oe_HWYK3fYFT-_y66HYpQbOBqSgPXmHvtJPALuTxczEhDhVC6n5c2UY2ImxNYcTfsUTo55aEveUxP56isCUY8fXPgi5CHAFauGzygpeLrhxGMPtPXlprP__ePX6SwIfsAt21UvYXGffTkaHh--jbuqDXEtU1heXZpXSa21U8LXxgIeMcZJW4jK54kXKvG-trDPZGVspWuZyVo41MVxic-ky3bZzryZ-weMW1hOk1xYgCA2TzJvKgloo_ZTuEnuvY3Y0370ykUQ5yj7oAZ7uKQejthzGtitiV1-QzqbkuVkPCqPP4xORpPx-3ISsV0a-a1hmqsCpSwitt9PhbJz8bYUmqSFZAqnn2xPg3PiHxc7982abAAeqqwoLrXRCsskmojthWl21oBCCdQzitgLmk2XPGV5-PHgHR09_BfjR-wGQMAiUBr32c5qufaP2dXWrQfkTgPKBsLt8GBAhNk_6AonLA |
link.rule.ids | 315,782,786,808,814,843,1408,27933,27934,46064,46488,58024,58034,58037,58257,58267,58270 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BKwQX3qULBYxAHJAW7ctr-8ABSpoW2oBEUHqzvGtHRFWTKA-J3PgBHPiN_BJm7N20lVAlxGkt7djy2jP2Z-_MNwAvhkaUThYqVsrxuFB5FVdWqhiPQ4g3UmcT65PYfhG9Y_m-QzQ5b9pYmMAPsb5wI8vw6zUZOF1In7PyelKNXqdZKXAF3ixK1ESK4Mg_n-PcDdTeeMiLpVRZw05KjjxndS_sR5s0tN9b18S_gc6LGNZvQnu3_rP7t-Fmgz7Z26Aud-CKG9-FayEf5QpLHc9hvboHP70rAXOn05HnEGE-Y86cTYaMYjPxeM1ItI3iZBSKNmOtdyJbfCMs6ujOhU1DKALWWEzYyMcFD1fMu7IHz_XZqpH__ePX6ShwfmCT80XLYnEfvu51-rv7cZO4Ia55hiuszYoqqaW0InW1MghJlLLclGnlisSlInGuNvjMeaVMJWue8zq1RI1jE5dzm2_BxngydtvADK6oSZEaRCGmSHKnKo6Ao3ZDbKRwzkTwvJ0-PQ38HLo919AIaz_CEbz0M7sWMbMT8mgTXA96Xd0_6h53B70PehDBlp_6tWBWiJLYLCLYaXVBN1Y-16n07EI8w9fP1q_RPumnixm7ydLLIEIUeVleKiMFZUpUETwIenbWgVKkRGkUwSuvTpd8pd799O7Alx7-i_BTuL7fPzrUhwe9j4_gBiLCMng47sDGYrZ0j-Hq3C6feNv6A5SJKFg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKxAX3oVAASMQB6RUcRLHtsQF2t2lPJZKFG1vlhM76qrqZrUPib3xAzjwG_kljO1k20qoEuIUSxlbju2xv3FmvgF4WWteWJHLWErL4lxmZVwaIWM0hxBvUGsS45PYfuXDI7HXczQ5b7pYmMAPsb5wc5rh92un4FNTn1PyqinHOzQtOG7AmznicMecn2UH5yh3A7M32nixEDJtyUmdH89Z3QvH0aYb2e-dZ-LfMOdFCOvPoP6t_-v9bbjZYk_yNiyWO3DFTu7CtZCNcoWlnmewXt2Dn96RgNjT6dgziBCfL2dOmpq4yEw0rokT7WI4iQtEm5HON5Esjh0Ste7GhUxDIALWWDRk7KOC6xXxjuzBb322auV___h1Og6MH9jkfNFxWNyHb_3e4e77uE3bEFcsxf3VpHmZVEIYTm0lNQISKQ3TBS1tnljKE2srjc-MlVKXomIZq6hxxDgmsRkz2RZsTJqJfQhE436a5FQjBtF5kllZMoQbla2xkdxaHcGLbvbUNLBzqM6qcSOs_AhH8MpP7FpEz06cPxtnajQcqMPPg6PBaPhBjSLY8jO_FkxzXjguiwi2u6WgWh2fKyo8txBL8fXz9WvUTvfLRU9ss_QyiA95VhSXygju8iTKCB6EZXbWgYJTR2gUwWu_mi75SrX75d2-Lz36F-FncP1gr68-7Q8_PoYbCAeL4N64DRuL2dI-gatzs3zqNesP4zIm_g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+empirical+models+of+species+colonization+under+multiple+threatening+processes+to+identify+complementary+threat%E2%80%90mitigation+strategies&rft.jtitle=Conservation+biology&rft.au=Tulloch%2C+Ayesha+I.T.&rft.au=Mortelliti%2C+Alessio&rft.au=Kay%2C+Geoffrey+M.&rft.au=Florance%2C+Daniel&rft.date=2016-08-01&rft.issn=0888-8892&rft.eissn=1523-1739&rft.volume=30&rft.issue=4&rft.spage=867&rft.epage=882&rft_id=info:doi/10.1111%2Fcobi.12672&rft.externalDBID=10.1111%252Fcobi.12672&rft.externalDocID=COBI12672 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon |