Using empirical models of species colonization under multiple threatening processes to identify complementary threat-mitigation strategies

Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised...

Full description

Saved in:
Bibliographic Details
Published in:Conservation biology Vol. 30; no. 4; pp. 867 - 882
Main Authors: Tulloch, Ayesha I.T., Mortelliti, Alessio, Kay, Geoffrey M., Florance, Daniel, Lindenmayer, David
Format: Journal Article
Language:English
Published: United States Blackwell Publishing Ltd 01-08-2016
Wiley Periodicals Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised a way to prioritize threat mitigation at a regional scale with empirical evidence based on predicted changes to population dynamics—information that is lacking in most threat-management prioritization frameworks that rely on expert elicitation. We used dynamic occupancy models to investigate the effects of multiple threats (tree cover, grazing, and presence of an hyperaggressive competitor, the Noisy Miner (Manorina melanocephala) on bird-population dynamics in an endangered woodland community in southeastern Australia. The 3 threatening processes had different effects on different species. We used predicted patch-colonization probabilities to estimate the benefit to each species of removing one or more threats. We then determined the complementary set of threat-mitigation strategies that maximized colonization of all species while ensuring that redundant actions with little benefit were avoided. The single action that resulted in the highest colonization was increasing tree cover, which increased patch colonization by 5% and 11% on average across all species and for declining species, respectively. Combining Noisy Miner control with increasing tree cover increased species colonization by 10% and 19% on average for all species and for declining species respectively, and was a higher priority than changing grazing regimes. Guidance for prioritizing threat mitigation is critical in the face of cumulative threatening processes. By incorporating population dynamics in prioritization of threat management, our approach helps ensure funding is not wasted on ineffective management programs that target the wrong threats or species. Las estrategias para priorizar las acciones de conservación están ganando popularidad. Sin embargo, existe evidencia empírica limitada sobre cuáles especies pueden beneficiarse más de la mitigación de amenazas y sobre cuál combinación de amenazas, si son mitigadas simultáneamente, tendría mejores resultados para la biodiversidad. Diseñamos una forma de priorizar la mitigación de amenazas a escala regional con evidencia empírica basada en los cambios pronosticados para las dinámicas poblacionales información faltante en la mayoría de los marcos de trabajo de priorización que dependen de la obtención de información de expertos. Usamos modelos de ocupación dinámica para investigar los efectos de las amenazas múltiples (cobertura de árboles, pastoreo y presencia de un competidor hiperagresivo, Manorina melanocephala) sobre las dinámicas poblacionales de las aves de una comunidad boscosa en peligro de extinción en el sureste de Australia. Los tres procesos amenazantes tuvieron diferentes efectos sobre diferentes especies. Usamos probabilidades de colonización de fragmentos para estimar el beneficio de remover una o más amenazas para cada especie. Después determinamos el conjunto complementario de estrategias de mitigación de amenazas que maximizaron la colonización de todas las especies, a la vez que aseguraban que se evitaran las acciones redundantes y con pocos beneficios. La única acción que resultó en la mayor colonización fue el incremento de la cobertura de árboles, lo que aumentó la colonización del fragmento en un 5 % y 11 % en promedio para todas las especies y para las especies en declive, respectivamente. Combinar el control de Manorina melanocephala con el incremento de la cobertura de árboles aumentó la colonización de especies en un 10 % y 19 % en promedio para todas las especies y para las especies en declive, respectivamente, y fue una mayor prioridad que cambiar los regímenes de pastoreo. La guía es crítica para la priorización de mitigación de amenazas de frente a los procesos amenazantes acumulativos. Si incorporamos las dinámicas poblacionales en la priorización del manejo de amenazas, nuestra estrategia ayuda a asegurar que el financiamiento no se desperdicie en programas de manejo poco efectivos que enfoquen las amenazas o las especies incorrectas.
AbstractList Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised a way to prioritize threat mitigation at a regional scale with empirical evidence based on predicted changes to population dynamics-information that is lacking in most threat-management prioritization frameworks that rely on expert elicitation. We used dynamic occupancy models to investigate the effects of multiple threats (tree cover, grazing, and presence of an hyperaggressive competitor, the Noisy Miner (Manorina melanocephala) on bird-population dynamics in an endangered woodland community in southeastern Australia. The 3 threatening processes had different effects on different species. We used predicted patch-colonization probabilities to estimate the benefit to each species of removing one or more threats. We then determined the complementary set of threat-mitigation strategies that maximized colonization of all species while ensuring that redundant actions with little benefit were avoided. The single action that resulted in the highest colonization was increasing tree cover, which increased patch colonization by 5% and 11% on average across all species and for declining species, respectively. Combining Noisy Miner control with increasing tree cover increased species colonization by 10% and 19% on average for all species and for declining species respectively, and was a higher priority than changing grazing regimes. Guidance for prioritizing threat mitigation is critical in the face of cumulative threatening processes. By incorporating population dynamics in prioritization of threat management, our approach helps ensure funding is not wasted on ineffective management programs that target the wrong threats or species.
Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised a way to prioritize threat mitigation at a regional scale with empirical evidence based on predicted changes to population dynamics--information that is lacking in most threat-management prioritization frameworks that rely on expert elicitation. We used dynamic occupancy models to investigate the effects of multiple threats (tree cover, grazing, and presence of an hyperaggressive competitor, the Noisy Miner (Manorina melanocephala) on bird-population dynamics in an endangered woodland community in southeastern Australia. The 3 threatening processes had different effects on different species. We used predicted patch-colonization probabilities to estimate the benefit to each species of removing one or more threats. We then determined the complementary set of threat-mitigation strategies that maximized colonization of all species while ensuring that redundant actions with little benefit were avoided. The single action that resulted in the highest colonization was increasing tree cover, which increased patch colonization by 5% and 11% on average across all species and for declining species, respectively. Combining Noisy Miner control with increasing tree cover increased species colonization by 10% and 19% on average for all species and for declining species respectively, and was a higher priority than changing grazing regimes. Guidance for prioritizing threat mitigation is critical in the face of cumulative threatening processes. By incorporating population dynamics in prioritization of threat management, our approach helps ensure funding is not wasted on ineffective management programs that target the wrong threats or species. El Uso de Modelos Empíricos de la Colonización de Especies bajo Procesos Múltiples de Amenazas para Identificar Estrategias Complementarias de Mitigación de Amenazas Resumen Las estrategias para priorizar las acciones de conservación están ganando popularidad. Sin embargo, existe evidencia empírica limitada sobre cuáles especies pueden beneficiarse más de la mitigación de amenazas y sobre cuál combinación de amenazas, si son mitigadas simultáneamente, tendría mejores resultados para la biodiversidad. Diseñamos una forma de priorizar la mitigación de amenazas a escala regional con evidencia empírica basada en los cambios pronosticados para las dinámicas poblacionales - información faltante en la mayoría de los marcos de trabajo de priorización que dependen de la obtención de información de expertos. Usamos modelos de ocupación dinámica para investigar los efectos de las amenazas múltiples (cobertura de árboles, pastoreo y presencia de un competidor hiperagresivo, Manorina melanocephala) sobre las dinámicas poblacionales de las aves de una comunidad boscosa en peligro de extinción en el sureste de Australia. Los tres procesos amenazantes tuvieron diferentes efectos sobre diferentes especies. Usamos probabilidades de colonización de fragmentos para estimar el beneficio de remover una o más amenazas para cada especie. Después determinamos el conjunto complementario de estrategias de mitigación de amenazas que maximizaron la colonización de todas las especies, a la vez que aseguraban que se evitaran las acciones redundantes y con pocos beneficios. La única acción que resultó en la mayor colonización fue el incremento de la cobertura de árboles, lo que aumentó la colonización del fragmento en un 5 % y 11 % en promedio para todas las especies y para las especies en declive, respectivamente. Combinar el control de Manorina melanocephala con el incremento de la cobertura de árboles aumentó la colonización de especies en un 10 % y 19 % en promedio para todas las especies y para las especies en declive, respectivamente, y fue una mayor prioridad que cambiar los regímenes de pastoreo. La guía es crítica para la priorización de mitigación de amenazas de frente a los procesos amenazantes acumulativos. Si incorporamos las dinámicas poblacionales en la priorización del manejo de amenazas, nuestra estrategia ayuda a asegurar que el financiamiento no se desperdicie en programas de manejo poco efectivos que enfoquen las amenazas o las especies incorrectas.
Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised a way to prioritize threat mitigation at a regional scale with empirical evidence based on predicted changes to population dynamics—information that is lacking in most threat‐management prioritization frameworks that rely on expert elicitation. We used dynamic occupancy models to investigate the effects of multiple threats (tree cover, grazing, and presence of an hyperaggressive competitor, the Noisy Miner (Manorina melanocephala) on bird‐population dynamics in an endangered woodland community in southeastern Australia. The 3 threatening processes had different effects on different species. We used predicted patch‐colonization probabilities to estimate the benefit to each species of removing one or more threats. We then determined the complementary set of threat‐mitigation strategies that maximized colonization of all species while ensuring that redundant actions with little benefit were avoided. The single action that resulted in the highest colonization was increasing tree cover, which increased patch colonization by 5% and 11% on average across all species and for declining species, respectively. Combining Noisy Miner control with increasing tree cover increased species colonization by 10% and 19% on average for all species and for declining species respectively, and was a higher priority than changing grazing regimes. Guidance for prioritizing threat mitigation is critical in the face of cumulative threatening processes. By incorporating population dynamics in prioritization of threat management, our approach helps ensure funding is not wasted on ineffective management programs that target the wrong threats or species.
Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised a way to prioritize threat mitigation at a regional scale with empirical evidence based on predicted changes to population dynamics-information that is lacking in most threat-management prioritization frameworks that rely on expert elicitation. We used dynamic occupancy models to investigate the effects of multiple threats (tree cover, grazing, and presence of an hyperaggressive competitor, the Noisy Miner (Manorina melanocephala) on bird-population dynamics in an endangered woodland community in southeastern Australia. The 3 threatening processes had different effects on different species. We used predicted patch-colonization probabilities to estimate the benefit to each species of removing one or more threats. We then determined the complementary set of threat-mitigation strategies that maximized colonization of all species while ensuring that redundant actions with little benefit were avoided. The single action that resulted in the highest colonization was increasing tree cover, which increased patch colonization by 5% and 11% on average across all species and for declining species, respectively. Combining Noisy Miner control with increasing tree cover increased species colonization by 10% and 19% on average for all species and for declining species respectively, and was a higher priority than changing grazing regimes. Guidance for prioritizing threat mitigation is critical in the face of cumulative threatening processes. By incorporating population dynamics in prioritization of threat management, our approach helps ensure funding is not wasted on ineffective management programs that target the wrong threats or species.Original Abstract: El Uso de Modelos Empiricos de la Colonizacion de Especies bajo Procesos Multiples de Amenazas para Identificar Estrategias Complementarias de Mitigacion de Amenazas Resumen Las estrategias para priorizar las acciones de conservacion estan ganando popularidad. Sin embargo, existe evidencia empirica limitada sobre cuales especies pueden beneficiarse mas de la mitigacion de amenazas y sobre cual combinacion de amenazas, si son mitigadas simultaneamente, tendria mejores resultados para la biodiversidad. Disenamos una forma de priorizar la mitigacion de amenazas a escala regional con evidencia empirica basada en los cambios pronosticados para las dinamicas poblacionales - informacion faltante en la mayoria de los marcos de trabajo de priorizacion que dependen de la obtencion de informacion de expertos. Usamos modelos de ocupacion dinamica para investigar los efectos de las amenazas multiples (cobertura de arboles, pastoreo y presencia de un competidor hiperagresivo,Manorina melanocephala ) sobre las dinamicas poblacionales de las aves de una comunidad boscosa en peligro de extincion en el sureste de Australia. Los tres procesos amenazantes tuvieron diferentes efectos sobre diferentes especies. Usamos probabilidades de colonizacion de fragmentos para estimar el beneficio de remover una o mas amenazas para cada especie. Despues determinamos el conjunto complementario de estrategias de mitigacion de amenazas que maximizaron la colonizacion de todas las especies, a la vez que aseguraban que se evitaran las acciones redundantes y con pocos beneficios. La unica accion que resulto en la mayor colonizacion fue el incremento de la cobertura de arboles, lo que aumento la colonizacion del fragmento en un 5 % y 11 % en promedio para todas las especies y para las especies en declive, respectivamente. Combinar el control deManorina melanocephalacon el incremento de la cobertura de arboles aumento la colonizacion de especies en un 10 % y 19 % en promedio para todas las especies y para las especies en declive, respectivamente, y fue una mayor prioridad que cambiar los regimenes de pastoreo. La guia es critica para la priorizacion de mitigacion de amenazas de frente a los procesos amenazantes acumulativos. Si incorporamos las dinamicas poblacionales en la priorizacion del manejo de amenazas, nuestra estrategia ayuda a asegurar que el financiamiento no se desperdicie en programas de manejo poco efectivos que enfoquen las amenazas o las especies incorrectas.
Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised a way to prioritize threat mitigation at a regional scale with empirical evidence based on predicted changes to population dynamics—information that is lacking in most threat‐management prioritization frameworks that rely on expert elicitation. We used dynamic occupancy models to investigate the effects of multiple threats (tree cover, grazing, and presence of an hyperaggressive competitor, the Noisy Miner (Manorina melanocephala) on bird‐population dynamics in an endangered woodland community in southeastern Australia. The 3 threatening processes had different effects on different species. We used predicted patch‐colonization probabilities to estimate the benefit to each species of removing one or more threats. We then determined the complementary set of threat‐mitigation strategies that maximized colonization of all species while ensuring that redundant actions with little benefit were avoided. The single action that resulted in the highest colonization was increasing tree cover, which increased patch colonization by 5% and 11% on average across all species and for declining species, respectively. Combining Noisy Miner control with increasing tree cover increased species colonization by 10% and 19% on average for all species and for declining species respectively, and was a higher priority than changing grazing regimes. Guidance for prioritizing threat mitigation is critical in the face of cumulative threatening processes. By incorporating population dynamics in prioritization of threat management, our approach helps ensure funding is not wasted on ineffective management programs that target the wrong threats or species. El Uso de Modelos Empíricos de la Colonización de Especies bajo Procesos Múltiples de Amenazas para Identificar Estrategias Complementarias de Mitigación de Amenazas Resumen Las estrategias para priorizar las acciones de conservación están ganando popularidad. Sin embargo, existe evidencia empírica limitada sobre cuáles especies pueden beneficiarse más de la mitigación de amenazas y sobre cuál combinación de amenazas, si son mitigadas simultáneamente, tendría mejores resultados para la biodiversidad. Diseñamos una forma de priorizar la mitigación de amenazas a escala regional con evidencia empírica basada en los cambios pronosticados para las dinámicas poblacionales – información faltante en la mayoría de los marcos de trabajo de priorización que dependen de la obtención de información de expertos. Usamos modelos de ocupación dinámica para investigar los efectos de las amenazas múltiples (cobertura de árboles, pastoreo y presencia de un competidor hiperagresivo, Manorina melanocephala) sobre las dinámicas poblacionales de las aves de una comunidad boscosa en peligro de extinción en el sureste de Australia. Los tres procesos amenazantes tuvieron diferentes efectos sobre diferentes especies. Usamos probabilidades de colonización de fragmentos para estimar el beneficio de remover una o más amenazas para cada especie. Después determinamos el conjunto complementario de estrategias de mitigación de amenazas que maximizaron la colonización de todas las especies, a la vez que aseguraban que se evitaran las acciones redundantes y con pocos beneficios. La única acción que resultó en la mayor colonización fue el incremento de la cobertura de árboles, lo que aumentó la colonización del fragmento en un 5 % y 11 % en promedio para todas las especies y para las especies en declive, respectivamente. Combinar el control de Manorina melanocephala con el incremento de la cobertura de árboles aumentó la colonización de especies en un 10 % y 19 % en promedio para todas las especies y para las especies en declive, respectivamente, y fue una mayor prioridad que cambiar los regímenes de pastoreo. La guía es crítica para la priorización de mitigación de amenazas de frente a los procesos amenazantes acumulativos. Si incorporamos las dinámicas poblacionales en la priorización del manejo de amenazas, nuestra estrategia ayuda a asegurar que el financiamiento no se desperdicie en programas de manejo poco efectivos que enfoquen las amenazas o las especies incorrectas.
Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised a way to prioritize threat mitigation at a regional scale with empirical evidence based on predicted changes to population dynamics—information that is lacking in most threat-management prioritization frameworks that rely on expert elicitation. We used dynamic occupancy models to investigate the effects of multiple threats (tree cover, grazing, and presence of an hyperaggressive competitor, the Noisy Miner (Manorina melanocephala) on bird-population dynamics in an endangered woodland community in southeastern Australia. The 3 threatening processes had different effects on different species. We used predicted patch-colonization probabilities to estimate the benefit to each species of removing one or more threats. We then determined the complementary set of threat-mitigation strategies that maximized colonization of all species while ensuring that redundant actions with little benefit were avoided. The single action that resulted in the highest colonization was increasing tree cover, which increased patch colonization by 5% and 11% on average across all species and for declining species, respectively. Combining Noisy Miner control with increasing tree cover increased species colonization by 10% and 19% on average for all species and for declining species respectively, and was a higher priority than changing grazing regimes. Guidance for prioritizing threat mitigation is critical in the face of cumulative threatening processes. By incorporating population dynamics in prioritization of threat management, our approach helps ensure funding is not wasted on ineffective management programs that target the wrong threats or species. Las estrategias para priorizar las acciones de conservación están ganando popularidad. Sin embargo, existe evidencia empírica limitada sobre cuáles especies pueden beneficiarse más de la mitigación de amenazas y sobre cuál combinación de amenazas, si son mitigadas simultáneamente, tendría mejores resultados para la biodiversidad. Diseñamos una forma de priorizar la mitigación de amenazas a escala regional con evidencia empírica basada en los cambios pronosticados para las dinámicas poblacionales información faltante en la mayoría de los marcos de trabajo de priorización que dependen de la obtención de información de expertos. Usamos modelos de ocupación dinámica para investigar los efectos de las amenazas múltiples (cobertura de árboles, pastoreo y presencia de un competidor hiperagresivo, Manorina melanocephala) sobre las dinámicas poblacionales de las aves de una comunidad boscosa en peligro de extinción en el sureste de Australia. Los tres procesos amenazantes tuvieron diferentes efectos sobre diferentes especies. Usamos probabilidades de colonización de fragmentos para estimar el beneficio de remover una o más amenazas para cada especie. Después determinamos el conjunto complementario de estrategias de mitigación de amenazas que maximizaron la colonización de todas las especies, a la vez que aseguraban que se evitaran las acciones redundantes y con pocos beneficios. La única acción que resultó en la mayor colonización fue el incremento de la cobertura de árboles, lo que aumentó la colonización del fragmento en un 5 % y 11 % en promedio para todas las especies y para las especies en declive, respectivamente. Combinar el control de Manorina melanocephala con el incremento de la cobertura de árboles aumentó la colonización de especies en un 10 % y 19 % en promedio para todas las especies y para las especies en declive, respectivamente, y fue una mayor prioridad que cambiar los regímenes de pastoreo. La guía es crítica para la priorización de mitigación de amenazas de frente a los procesos amenazantes acumulativos. Si incorporamos las dinámicas poblacionales en la priorización del manejo de amenazas, nuestra estrategia ayuda a asegurar que el financiamiento no se desperdicie en programas de manejo poco efectivos que enfoquen las amenazas o las especies incorrectas.
Author Florance, Daniel
Tulloch, Ayesha I.T.
Mortelliti, Alessio
Kay, Geoffrey M.
Lindenmayer, David
Author_xml – sequence: 1
  givenname: Ayesha I.T.
  surname: Tulloch
  fullname: Tulloch, Ayesha I.T.
  email: ayesha.tulloch@anu.edu.au
  organization: Fenner School of Environment and Society, The Australian National University, ACT, 2601, Canberra, Australia
– sequence: 2
  givenname: Alessio
  surname: Mortelliti
  fullname: Mortelliti, Alessio
  organization: Fenner School of Environment and Society, The Australian National University, 2601, Canberra, ACT, Australia
– sequence: 3
  givenname: Geoffrey M.
  surname: Kay
  fullname: Kay, Geoffrey M.
  organization: Fenner School of Environment and Society, The Australian National University, ACT, 2601, Canberra, Australia
– sequence: 4
  givenname: Daniel
  surname: Florance
  fullname: Florance, Daniel
  organization: Fenner School of Environment and Society, The Australian National University, ACT, 2601, Canberra, Australia
– sequence: 5
  givenname: David
  surname: Lindenmayer
  fullname: Lindenmayer, David
  organization: Fenner School of Environment and Society, The Australian National University, ACT, 2601, Canberra, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26711716$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFu1DAQQC1URLcLF-6gSFwqpBQ7WSf2sazKUlTaS6vlZjn27OIlsYPtCJZP4KtxyLZIHBC-jKx58zzjOUFH1llA6DnBZySdN8o15owUVV08QjNCizIndcmP0AwzxnLGeHGMTkLYYYw5JYsn6DixhNSkmqGfd8HYbQZdb7xRss06p6ENmdtkoQdlIGTKtc6aHzIaZ7PBavBZN7TR9C1k8bMHGcGOjt47BSGkiugyo8FGs9mn6i6BXbpJvz_weWei2U7CEH0SbNNDT9HjjWwDPDvEObp7d3G7fJ9f3awul-dXuaIFLnJdLBqsGNM1AcUl5oRzTWVFGlhgIDUGUDLFkjZcNkzRkiqiMS4rjaGkupyj08mbGv46QIiiM0FB20oLbgiCMMxSddL-D1rUZV1WVUJf_YXu3OBtGmSkCK84TegcvZ4o5V0IHjai96ZLPyMIFuMyxbhM8XuZCX55UA5NB_oBvd9eAsgEfDMt7P-hEsubt5f30hdTzS5E5_84F3VF8GLsMJ_yJkT4_pCX_ouo0qhUrK9X4vbj6tNqff1BrMtfLZDHsA
CitedBy_id crossref_primary_10_1016_j_biocon_2016_10_009
crossref_primary_10_1016_j_agee_2023_108765
crossref_primary_10_1111_cobi_13686
crossref_primary_10_1111_1365_2664_13427
crossref_primary_10_1038_s41559_017_0457_3
crossref_primary_10_1002_eap_1846
crossref_primary_10_1002_eap_1953
crossref_primary_10_1111_icad_12705
crossref_primary_10_1017_S0376892922000388
crossref_primary_10_1111_ecog_03079
crossref_primary_10_1007_s10530_023_03200_6
crossref_primary_10_1016_j_omega_2019_102147
crossref_primary_10_1007_s11625_021_00920_3
crossref_primary_10_1016_j_pecon_2018_03_003
crossref_primary_10_1111_csp2_13023
crossref_primary_10_1080_01584197_2022_2106875
crossref_primary_10_1111_1365_2664_13320
crossref_primary_10_1111_2041_210X_14220
crossref_primary_10_1111_cobi_12779
crossref_primary_10_1111_oik_06583
Cites_doi 10.1038/35012251
10.1071/MU09109
10.1007/s00442-015-3323-5
10.1111/1365-2664.12500
10.1111/cobi.12523
10.1111/j.1365-2664.2005.01012.x
10.1111/ecog.02143
10.1890/080170
10.1111/j.1461-0248.2008.01243.x
10.1371/journal.pone.0128027
10.1046/j.1442-9993.2002.01223.x
10.1111/ddi.12128
10.1111/j.1755-263X.2008.00021.x
10.1093/biomet/78.3.691
10.1111/1365-2664.12441
10.18637/jss.v043.i10
10.1371/journal.pone.0050872
10.1111/j.1523-1739.2008.01043.x
10.1111/j.1365-2664.2005.01098.x
10.1098/rspb.2004.2724
10.1111/j.1472-4642.2011.00747.x
10.1111/cobi.12551
10.1890/140022
10.1016/j.biocon.2006.08.005
10.1890/13-0711.1
10.1111/ddi.12064
10.1890/10-2340.1
10.1111/j.1461-0248.2011.01673.x
10.1016/j.landurbplan.2008.12.007
10.1016/j.biocon.2009.12.018
10.1016/j.agee.2006.12.012
10.1111/j.1523-1739.2006.00624.x
10.1098/rstb.2011.0108
10.1111/cobi.12413
10.1890/02-3090
10.1111/cobi.12092
ContentType Journal Article
Copyright 2016 Society for Conservation Biology
2016 Society for Conservation Biology.
2016, Society for Conservation Biology
Copyright_xml – notice: 2016 Society for Conservation Biology
– notice: 2016 Society for Conservation Biology.
– notice: 2016, Society for Conservation Biology
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7SN
7SS
7ST
7U6
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
SOI
7X8
DOI 10.1111/cobi.12672
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional


Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1523-1739
EndPage 882
ExternalDocumentID 4109291801
10_1111_cobi_12672
26711716
COBI12672
24761047
ark_67375_WNG_TMGXGWNJ_W
Genre article
Journal Article
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GroupedDBID ---
-DZ
.-4
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29F
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AAUTI
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABLJU
ABPLY
ABPPZ
ABPVW
ABTLG
ABXSQ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACPVT
ACSCC
ACSTJ
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADUKH
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AGUYK
AHBTC
AHXOZ
AI.
AIAGR
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
AQVQM
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
D0L
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LMP
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OES
OIG
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QN7
R.K
ROL
RSU
RX1
SA0
SAMSI
SUPJJ
TEORI
TN5
UB1
UKR
UQL
V8K
VH1
VOH
W8V
W99
WBKPD
WHG
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
XSW
YFH
YUY
YV5
YZZ
ZCA
ZCG
ZO4
ZZTAW
~02
~IA
~KM
~WT
AAJUZ
ABCVL
ABHUG
ABWRO
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
AIRJO
CWIXF
DWIUU
EQZMY
AFFDN
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7QG
7SN
7SS
7ST
7U6
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
SOI
7X8
ID FETCH-LOGICAL-c5202-d24b0c88d71ec9a09199d5a61be40e170eecae1735b9ab8c535c1d0036d0e35d3
IEDL.DBID 33P
ISSN 0888-8892
IngestDate Fri Oct 25 02:58:51 EDT 2024
Fri Oct 25 21:08:18 EDT 2024
Tue Nov 19 06:09:21 EST 2024
Thu Nov 21 22:30:20 EST 2024
Wed Oct 16 00:58:07 EDT 2024
Sat Aug 24 00:58:52 EDT 2024
Fri Feb 02 07:30:04 EST 2024
Wed Oct 30 09:53:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords grazing regimes
priorización de acciones de conservación
amenazas acumulativas
pérdida de hábitat
ecological dynamics
modelo de ocupación de fragmento dinámico
birds
manejo de amenazas prioritarias
dinámicas ecológicas
priority threat management
aves
conservation action prioritization
habitat loss
regímenes de pastoreo
dynamic patch occupancy model
cumulative threats
Language English
License 2016 Society for Conservation Biology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5202-d24b0c88d71ec9a09199d5a61be40e170eecae1735b9ab8c535c1d0036d0e35d3
Notes Further details on the study area, model fitting, and optimization methodology (Appendix S1) and estimated colonization rates for every species under alternative threat-mitigation strategies and benefit scenarios (Appendix S2) are available online. The authors are solely responsible for the content and functionality of these materials. Queries (other than absence of the material) should be directed to the corresponding author.
istex:FB35D352D7BB24BC1B557B0124D99F8C231EAB59
ark:/67375/WNG-TMGXGWNJ-W
ArticleID:COBI12672
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26711716
PQID 1801969527
PQPubID 36794
PageCount 16
ParticipantIDs proquest_miscellaneous_1808735199
proquest_miscellaneous_1802737366
proquest_journals_1801969527
crossref_primary_10_1111_cobi_12672
pubmed_primary_26711716
wiley_primary_10_1111_cobi_12672_COBI12672
jstor_primary_24761047
istex_primary_ark_67375_WNG_TMGXGWNJ_W
PublicationCentury 2000
PublicationDate 2016-08
20160801
August 2016
2016-08-00
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Conservation biology
PublicationTitleAlternate Conservation Biology
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Periodicals Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Periodicals Inc
References Dorrough J, Moll J, Crosthwaite J. 2007. Can intensification of temperate Australian livestock production systems save land for native biodiversity? Agriculture, Ecosystems & Environment 121:222-232.
Fiske I, Chandler R. 2011. Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software 43:1-23.
Nagelkerke NJ. 1991. A note on a general definition of the coefficient of determination. Biometrika 78:691-692.
Duncan DH, Dorrough JW. 2009. Historical and current land use shape landscape restoration options in the Australian wheat and sheep farming zone. Landscape and Urban Planning 91:124-132.
Burgman MA, Keith D, Hopper SD, Widyatmoko D, Drill C. 2007. Threat syndromes and conservation of the Australian flora. Biological Conservation 134:73-82.
Field SA, Tyre AJ, Possingham HP. 2002. Estimating bird species richness: How should repeat surveys be organized in time? Austral Ecology 27:624-629.
Evans MC, Possingham HP, Wilson KA. 2011. What to do in the face of multiple threats? Incorporating dependencies within a return on investment framework for conservation. Diversity and Distributions 17:437-450.
Firn J, Martin TG, Chades I, Walters B, Hayes J, Nicol S, Carwardine J. 2015. Priority threat management of non-native plants to maintain ecosystem integrity across heterogeneous landscapes. Journal of Applied Ecology 52:1135-1144.
Burnham KP, Anderson DR. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, New York.
Ruscoe WA, et al. 2011. Unexpected consequences of control: competitive vs.predator release in a four-species assemblage of invasive mammals. Ecology Letters 14:1035-1042.
Mortelliti A, Lindenmayer DB. 2015. Effects of landscape transformation on bird colonization and extinction patterns in a large-scale, long-term natural experiment. Conservation Biology 29:1314-1326.
Isaac NJB, Cowlishaw G. 2004. How species respond to multiple extinction threats. Proceedings of the Royal Society of London B: Biological Sciences 271:1135-1141.
Darling ES, Côté IM. 2008. Quantifying the evidence for ecological synergies. Ecology Letters 11:1278-1286.
Santika T, McAlpine CA, Lunney D, Wilson KA, Rhodes JR. 2015. Assessing spatio-temporal priorities for species' recovery in broad-scale dynamic landscapes. Journal of Applied Ecology 52:832-840.
Auerbach NA, Tulloch AIT, Possingham HP. 2014. Informed actions: where to cost effectively manage multiple threats to species to maximize return on investment. Ecological Applications 24:1357-1373.
Tulloch AIT, Chadès I, Possingham HP. 2013. Accounting for complementarity to maximize monitoring power for species management. Conservation Biology 27:988-999.
Tulloch VJD, et al. 2015. Why do we map threats? Linking threat mapping with actions to make better conservation decisions. Frontiers in Ecology and the Environment 13:91-99.
Wilson KA, Evans MC, Di Marco M, Green DC, Boitani L, Possingham HP, Chiozza F, Rondinini C. 2011. Prioritizing conservation investments for mammal species globally. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 366:2670-2680.
Margules CR, Pressey RL. 2000. Systematic conservation planning. Nature 405:243-253.
Visconti P, Pressey RL, Segan DB, Wintle BA. 2010. Conservation planning with dynamic threats: the role of spatial design and priority setting for species' persistence. Biological Conservation 143:756-767.
MacKenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AB. 2003. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84:2200-2207.
Maron M, Grey MJ, Catterall CP, Major RE, Oliver DL, Clarke MF, Loyn RH, Mac Nally R, Davidson I, Thomson JR. 2013. Avifaunal disarray due to a single despotic species. Diversity and Distributions 19:1468-1479.
Auerbach NA, Wilson KA, Tulloch AIT, Rhodes JR, Hanson JO, Possingham HP. 2015. Effects of threat management interactions on conservation priorities. Conservation Biology 29:1626-1635.
Fischer J, Sherren K, Stott J, Zerger A, Warren G, Stein J. 2010. Toward landscape-wide conservation outcomes in Australia's temperate grazing region. Frontiers in Ecology and the Environment 8:69-74.
Mac Nally R, Bowen M, Howes A, McAlpine CA, Maron M. 2012. Despotic, high-impact species and the subcontinental scale control of avian assemblage structure. Ecology 93:668-678.
Chadès I, Nicol S, van Leeuwen S, Walters B, Firn J, Reeson A, Martin TG, Carwardine J. 2015. Benefits of integrating complementarity into priority threat management. Conservation Biology 29:525-536.
Lindenmayer DB, Fischer J, Felton A, Crane M, Michael D, Macgregor C, Montague-Drake R, Manning A, Hobbs RJ. 2008. Novel ecosystems resulting from landscape transformation create dilemmas for modern conservation practice. Conservation Letters 1:129-135.
Lindenmayer DB, Zammit C, Attwood SJ, Burns E, Shepherd CL, Kay G, Wood J. 2012. A novel and cost-effective monitoring approach for outcomes in an Australian biodiversity conservation incentive program. PLoS ONE 7:e50872. DOI: 10.1371/journal.pone.0050872.
Cattarino L, Hermoso V, Carwardine J, Kennard MJ, Linke S. 2015. Multi-Action planning for threat management: a novel approach for the spatial prioritization of conservation actions. PLoS ONE 10: e0128027. DOI: 10.1371/journal.pone.0128027.
Ponce-Reyes R, Nicholson E, Baxter PWJ, Fuller RA, Possingham H. 2013. Extinction risk in cloud forest fragments under climate change and habitat loss. Diversity and Distributions 19:518-529.
Moilanen A. 2008. Generalized complementarity and mapping of the concepts of systematic conservation planning. Conservation Biology 22:1655-1658.
Foster CN, Barton PS, Wood JT, Lindenmayer DB. 2015. Interactive effects of fire and large herbivores on web-building spiders. Oecologia 179:237-248.
Benson J. 2008. New South Wales vegetation classification and assessment. Part 2: Plant communities of the NSW Southwestern Slopes Bioregion and update of NSW Western Plains plant communities, Version 2 of the NSWVCA database. Cunninghamia 104:599-673.
Mackenzie DI, Royle JA. 2005. Designing occupancy studies: general advice and allocating survey effort. Journal of Applied Ecology 42:1105-1114.
Martin TG, Possingham HP. 2005. Predicting the impact of livestock grazing on birds using foraging height data. Journal of Applied Ecology 42:400-408.
Watson DM. 2011. A productivity-based explanation for woodland bird declines: poorer soils yield less food. EMU 111:10-18.
Martin TG, McIntye S. 2007. Impacts of livestock grazing and tree clearing on birds of woodland and riparian habitats. Conservation Biology 21:504-514.
2015; 13
2013; 27
1991; 78
2007; 121
2015; 52
2015; 10
2010; 143
2005; 42
2014; 24
2008; 104
2008; 11
2002
2011; 14
2011; 17
2008; 1
2011; 111
1999
2002; 27
2013; 19
2012; 93
2007; 134
2011; 366
2015; 29
2009; 91
2015; 179
2004; 271
2000; 405
2011; 43
2016
2008; 22
2012; 7
2007; 21
2003; 84
2010; 8
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Benson J (e_1_2_6_5_1) 2008; 104
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
Balmford A (e_1_2_6_4_1) 1999
Burnham KP (e_1_2_6_7_1) 2002
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 29
  start-page: 1626
  year: 2015
  end-page: 1635
  article-title: Effects of threat management interactions on conservation priorities
  publication-title: Conservation Biology
– volume: 179
  start-page: 237
  year: 2015
  end-page: 248
  article-title: Interactive effects of fire and large herbivores on web‐building spiders
  publication-title: Oecologia
– volume: 27
  start-page: 988
  year: 2013
  end-page: 999
  article-title: Accounting for complementarity to maximize monitoring power for species management
  publication-title: Conservation Biology
– volume: 111
  start-page: 10
  year: 2011
  end-page: 18
  article-title: A productivity‐based explanation for woodland bird declines: poorer soils yield less food
  publication-title: EMU
– volume: 366
  start-page: 2670
  year: 2011
  end-page: 2680
  article-title: Prioritizing conservation investments for mammal species globally. Philosophical Transactions of the Royal Society of London
  publication-title: Series B, Biological Sciences
– volume: 405
  start-page: 243
  year: 2000
  end-page: 253
  article-title: Systematic conservation planning
  publication-title: Nature
– volume: 134
  start-page: 73
  year: 2007
  end-page: 82
  article-title: Threat syndromes and conservation of the Australian flora
  publication-title: Biological Conservation
– volume: 19
  start-page: 1468
  year: 2013
  end-page: 1479
  article-title: Avifaunal disarray due to a single despotic species
  publication-title: Diversity and Distributions
– volume: 91
  start-page: 124
  year: 2009
  end-page: 132
  article-title: Historical and current land use shape landscape restoration options in the Australian wheat and sheep farming zone
  publication-title: Landscape and Urban Planning
– volume: 7
  start-page: e50872
  year: 2012
  article-title: A novel and cost‐effective monitoring approach for outcomes in an Australian biodiversity conservation incentive program
  publication-title: PLoS ONE
– volume: 29
  start-page: 1314
  year: 2015
  end-page: 1326
  article-title: Effects of landscape transformation on bird colonization and extinction patterns in a large‐scale, long‐term natural experiment
  publication-title: Conservation Biology
– volume: 11
  start-page: 1278
  year: 2008
  end-page: 1286
  article-title: Quantifying the evidence for ecological synergies
  publication-title: Ecology Letters
– volume: 52
  start-page: 832
  year: 2015
  end-page: 840
  article-title: Assessing spatio‐temporal priorities for species’ recovery in broad‐scale dynamic landscapes
  publication-title: Journal of Applied Ecology
– volume: 42
  start-page: 400
  year: 2005
  end-page: 408
  article-title: Predicting the impact of livestock grazing on birds using foraging height data
  publication-title: Journal of Applied Ecology
– volume: 19
  start-page: 518
  year: 2013
  end-page: 529
  article-title: Extinction risk in cloud forest fragments under climate change and habitat loss
  publication-title: Diversity and Distributions
– volume: 84
  start-page: 2200
  year: 2003
  end-page: 2207
  article-title: Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly
  publication-title: Ecology
– volume: 14
  start-page: 1035
  year: 2011
  end-page: 1042
  article-title: Unexpected consequences of control: competitive vs.predator release in a four‐species assemblage of invasive mammals
  publication-title: Ecology Letters
– year: 2016
– volume: 42
  start-page: 1105
  year: 2005
  end-page: 1114
  article-title: Designing occupancy studies: general advice and allocating survey effort
  publication-title: Journal of Applied Ecology
– volume: 104
  start-page: 599
  year: 2008
  end-page: 673
  article-title: New South Wales vegetation classification and assessment. Part 2: Plant communities of the NSW Southwestern Slopes Bioregion and update of NSW Western Plains plant communities, Version 2 of the NSWVCA database
  publication-title: Cunninghamia
– volume: 43
  start-page: 1
  year: 2011
  end-page: 23
  article-title: Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance
  publication-title: Journal of Statistical Software
– volume: 121
  start-page: 222
  year: 2007
  end-page: 232
  article-title: Can intensification of temperate Australian livestock production systems save land for native biodiversity?
  publication-title: Agriculture, Ecosystems & Environment
– volume: 17
  start-page: 437
  year: 2011
  end-page: 450
  article-title: What to do in the face of multiple threats? Incorporating dependencies within a return on investment framework for conservation
  publication-title: Diversity and Distributions
– volume: 22
  start-page: 1655
  year: 2008
  end-page: 1658
  article-title: Generalized complementarity and mapping of the concepts of systematic conservation planning
  publication-title: Conservation Biology
– volume: 271
  start-page: 1135
  year: 2004
  end-page: 1141
  article-title: How species respond to multiple extinction threats
  publication-title: Proceedings of the Royal Society of London B: Biological Sciences
– volume: 8
  start-page: 69
  year: 2010
  end-page: 74
  article-title: Toward landscape‐wide conservation outcomes in Australia's temperate grazing region
  publication-title: Frontiers in Ecology and the Environment
– volume: 78
  start-page: 691
  year: 1991
  end-page: 692
  article-title: A note on a general definition of the coefficient of determination
  publication-title: Biometrika
– year: 2002
– volume: 1
  start-page: 129
  year: 2008
  end-page: 135
  article-title: Novel ecosystems resulting from landscape transformation create dilemmas for modern conservation practice
  publication-title: Conservation Letters
– volume: 29
  start-page: 525
  year: 2015
  end-page: 536
  article-title: Benefits of integrating complementarity into priority threat management
  publication-title: Conservation Biology
– volume: 10
  start-page: e0128027
  year: 2015
  article-title: Multi‐Action planning for threat management: a novel approach for the spatial prioritization of conservation actions
  publication-title: PLoS ONE
– volume: 143
  start-page: 756
  year: 2010
  end-page: 767
  article-title: Conservation planning with dynamic threats: the role of spatial design and priority setting for species’ persistence
  publication-title: Biological Conservation
– start-page: 1
  year: 1999
  end-page: 28
– volume: 52
  start-page: 1135
  year: 2015
  end-page: 1144
  article-title: Priority threat management of non‐native plants to maintain ecosystem integrity across heterogeneous landscapes
  publication-title: Journal of Applied Ecology
– volume: 24
  start-page: 1357
  year: 2014
  end-page: 1373
  article-title: Informed actions: where to cost effectively manage multiple threats to species to maximize return on investment
  publication-title: Ecological Applications
– volume: 27
  start-page: 624
  year: 2002
  end-page: 629
  article-title: Estimating bird species richness: How should repeat surveys be organized in time?
  publication-title: Austral Ecology
– volume: 21
  start-page: 504
  year: 2007
  end-page: 514
  article-title: Impacts of livestock grazing and tree clearing on birds of woodland and riparian habitats
  publication-title: Conservation Biology
– volume: 13
  start-page: 91
  year: 2015
  end-page: 99
  article-title: Why do we map threats? Linking threat mapping with actions to make better conservation decisions
  publication-title: Frontiers in Ecology and the Environment
– volume: 93
  start-page: 668
  year: 2012
  end-page: 678
  article-title: Despotic, high‐impact species and the subcontinental scale control of avian assemblage structure
  publication-title: Ecology
– ident: e_1_2_6_25_1
  doi: 10.1038/35012251
– ident: e_1_2_6_39_1
  doi: 10.1071/MU09109
– ident: e_1_2_6_18_1
  doi: 10.1007/s00442-015-3323-5
– ident: e_1_2_6_15_1
  doi: 10.1111/1365-2664.12500
– ident: e_1_2_6_30_1
  doi: 10.1111/cobi.12523
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1365-2664.2005.01012.x
– ident: e_1_2_6_37_1
  doi: 10.1111/ecog.02143
– ident: e_1_2_6_16_1
  doi: 10.1890/080170
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1461-0248.2008.01243.x
– ident: e_1_2_6_8_1
  doi: 10.1371/journal.pone.0128027
– ident: e_1_2_6_14_1
  doi: 10.1046/j.1442-9993.2002.01223.x
– ident: e_1_2_6_26_1
  doi: 10.1111/ddi.12128
– ident: e_1_2_6_20_1
  doi: 10.1111/j.1755-263X.2008.00021.x
– ident: e_1_2_6_31_1
  doi: 10.1093/biomet/78.3.691
– ident: e_1_2_6_34_1
  doi: 10.1111/1365-2664.12441
– volume-title: Model selection and multimodel inference: a practical information‐theoretic approach
  year: 2002
  ident: e_1_2_6_7_1
  contributor:
    fullname: Burnham KP
– ident: e_1_2_6_17_1
  doi: 10.18637/jss.v043.i10
– ident: e_1_2_6_21_1
  doi: 10.1371/journal.pone.0050872
– ident: e_1_2_6_29_1
  doi: 10.1111/j.1523-1739.2008.01043.x
– ident: e_1_2_6_24_1
  doi: 10.1111/j.1365-2664.2005.01098.x
– ident: e_1_2_6_19_1
  doi: 10.1098/rspb.2004.2724
– ident: e_1_2_6_13_1
  doi: 10.1111/j.1472-4642.2011.00747.x
– ident: e_1_2_6_3_1
  doi: 10.1111/cobi.12551
– volume: 104
  start-page: 599
  year: 2008
  ident: e_1_2_6_5_1
  article-title: New South Wales vegetation classification and assessment. Part 2: Plant communities of the NSW Southwestern Slopes Bioregion and update of NSW Western Plains plant communities, Version 2 of the NSWVCA database
  publication-title: Cunninghamia
  contributor:
    fullname: Benson J
– ident: e_1_2_6_36_1
  doi: 10.1890/140022
– start-page: 1
  volume-title: Conservation in a changing world
  year: 1999
  ident: e_1_2_6_4_1
  contributor:
    fullname: Balmford A
– ident: e_1_2_6_6_1
  doi: 10.1016/j.biocon.2006.08.005
– ident: e_1_2_6_2_1
  doi: 10.1890/13-0711.1
– ident: e_1_2_6_32_1
  doi: 10.1111/ddi.12064
– ident: e_1_2_6_22_1
  doi: 10.1890/10-2340.1
– ident: e_1_2_6_33_1
  doi: 10.1111/j.1461-0248.2011.01673.x
– ident: e_1_2_6_12_1
  doi: 10.1016/j.landurbplan.2008.12.007
– ident: e_1_2_6_38_1
  doi: 10.1016/j.biocon.2009.12.018
– ident: e_1_2_6_11_1
  doi: 10.1016/j.agee.2006.12.012
– ident: e_1_2_6_27_1
  doi: 10.1111/j.1523-1739.2006.00624.x
– ident: e_1_2_6_40_1
  doi: 10.1098/rstb.2011.0108
– ident: e_1_2_6_9_1
  doi: 10.1111/cobi.12413
– ident: e_1_2_6_23_1
  doi: 10.1890/02-3090
– ident: e_1_2_6_35_1
  doi: 10.1111/cobi.12092
SSID ssj0009514
Score 2.3542712
Snippet Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from...
SourceID proquest
crossref
pubmed
wiley
jstor
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 867
SubjectTerms amenazas acumulativas
Animals
Australia
aves
Biodiversity
Birds
conservation action prioritization
Conservation of Natural Resources
cumulative threats
dinámicas ecológicas
dynamic patch occupancy model
ecological dynamics
Endangered & extinct species
Forests
grazing regimes
habitat loss
manejo de amenazas prioritarias
Manorina melanocephala
modelo de ocupación de fragmento dinámico
priority threat management
priorización de acciones de conservación
pérdida de hábitat
regímenes de pastoreo
Wildlife conservation
SummonAdditionalLinks – databaseName: JSTOR Biological Sciences Collection
  dbid: JBS
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7RRUhcludCYEFGPA5IgTixY_sIS7eARDmwqHuLnHgqKnabqg-J_gV-NWM7KawEK06J5IllZ-L4m-SbbwCeTa0qUQuTGoMyFaao09ppk1I4RHiDo8tcKGL7RY1P9buhl8l53ufCeFpl4AWGv_gEkOozfJ0LCrYzoQYw0FzEBIU_lHWjgDeFcqnWJu80SD1dp2nr2Suelyq_sOtc9TfwR09A_Bu0vIhUw1ZzfOM_B3kT9jssyd5E59-CKzi_DddidcktnQ2DIvX2DvwMxACG54tZUARhof7NirVT5jMtKVhm3rTPyWQ-sWzJeq4hW3_zyBL9FxS2iIkFdMW6ZbOQ5TvdskBMjzz05bazT89nUb-DOlyte0WKu_D1eHhy9D7tijCkjczpbelyUWeN1k5xbIwleGGMk7bkNYoMucoQG0vHQtbG1rqRhWy48zI3LsNCuuIA9ubtHO8Ds_R2zAS3hCisyAo0tSTw0OCUOhGINoGnvZOqRdTaqPoYxbuyCq5M4EXw387ELr97dpqS1WQ8qk4-jU5Hk_HHapLAQXDSzrD3UAKHvcerbsWuKq6DUpDMqfnJrpnWmv-BYufYboINoT1VlOWlNlr5qocmgXvxafo9gFJxL0-UwMvweF0yy-ro89sP4ezBv6bxEK4TeisjG_EQ9tbLDT6CwcptHocV8gvLag4A
  priority: 102
  providerName: JSTOR
Title Using empirical models of species colonization under multiple threatening processes to identify complementary threat-mitigation strategies
URI https://api.istex.fr/ark:/67375/WNG-TMGXGWNJ-W/fulltext.pdf
https://www.jstor.org/stable/24761047
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.12672
https://www.ncbi.nlm.nih.gov/pubmed/26711716
https://www.proquest.com/docview/1801969527
https://search.proquest.com/docview/1802737366
https://search.proquest.com/docview/1808735199
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fi9QwEA56Ivji7zur5xJRfBAqTds0CfjinXurgqvgyd5bSZssLnLbZbsL7pt_gA_-jf4lzkzavTuQA_GlLXRa0iSTftN-8w1jz6ZWFV7nJjbGyzg3WRVXTpsYwiHAG8K7xFER289qfKLfDFEm51WfCxP0IbYf3NAzaL1GB7dVe87J66aavRRpoXABhjCB8jeyT-cUd4OwN4R4sdYm7bRJkcZzdumFt9E17NjvPTHxb5DzIoKlV9DRrf9r_G12s4Oe_HWYK3fYFT-_y66HYpQbOBqSgPXmHvtJPALuTxczEhDhVC6n5c2UY2ImxNYcTfsUTo55aEveUxP56isCUY8fXPgi5CHAFauGzygpeLrhxGMPtPXlprP__ePX6SwIfsAt21UvYXGffTkaHh--jbuqDXEtU1heXZpXSa21U8LXxgIeMcZJW4jK54kXKvG-trDPZGVspWuZyVo41MVxic-ky3bZzryZ-weMW1hOk1xYgCA2TzJvKgloo_ZTuEnuvY3Y0370ykUQ5yj7oAZ7uKQejthzGtitiV1-QzqbkuVkPCqPP4xORpPx-3ISsV0a-a1hmqsCpSwitt9PhbJz8bYUmqSFZAqnn2xPg3PiHxc7982abAAeqqwoLrXRCsskmojthWl21oBCCdQzitgLmk2XPGV5-PHgHR09_BfjR-wGQMAiUBr32c5qufaP2dXWrQfkTgPKBsLt8GBAhNk_6AonLA
link.rule.ids 315,782,786,808,814,843,1408,27933,27934,46064,46488,58024,58034,58037,58257,58267,58270
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BKwQX3qULBYxAHJAW7ctr-8ABSpoW2oBEUHqzvGtHRFWTKA-J3PgBHPiN_BJm7N20lVAlxGkt7djy2jP2Z-_MNwAvhkaUThYqVsrxuFB5FVdWqhiPQ4g3UmcT65PYfhG9Y_m-QzQ5b9pYmMAPsb5wI8vw6zUZOF1In7PyelKNXqdZKXAF3ixK1ESK4Mg_n-PcDdTeeMiLpVRZw05KjjxndS_sR5s0tN9b18S_gc6LGNZvQnu3_rP7t-Fmgz7Z26Aud-CKG9-FayEf5QpLHc9hvboHP70rAXOn05HnEGE-Y86cTYaMYjPxeM1ItI3iZBSKNmOtdyJbfCMs6ujOhU1DKALWWEzYyMcFD1fMu7IHz_XZqpH__ePX6ShwfmCT80XLYnEfvu51-rv7cZO4Ia55hiuszYoqqaW0InW1MghJlLLclGnlisSlInGuNvjMeaVMJWue8zq1RI1jE5dzm2_BxngydtvADK6oSZEaRCGmSHKnKo6Ao3ZDbKRwzkTwvJ0-PQ38HLo919AIaz_CEbz0M7sWMbMT8mgTXA96Xd0_6h53B70PehDBlp_6tWBWiJLYLCLYaXVBN1Y-16n07EI8w9fP1q_RPumnixm7ydLLIEIUeVleKiMFZUpUETwIenbWgVKkRGkUwSuvTpd8pd799O7Alx7-i_BTuL7fPzrUhwe9j4_gBiLCMng47sDGYrZ0j-Hq3C6feNv6A5SJKFg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKxAX3oVAASMQB6RUcRLHtsQF2t2lPJZKFG1vlhM76qrqZrUPib3xAzjwG_kljO1k20qoEuIUSxlbju2xv3FmvgF4WWteWJHLWErL4lxmZVwaIWM0hxBvUGsS45PYfuXDI7HXczQ5b7pYmMAPsb5wc5rh92un4FNTn1PyqinHOzQtOG7AmznicMecn2UH5yh3A7M32nixEDJtyUmdH89Z3QvH0aYb2e-dZ-LfMOdFCOvPoP6t_-v9bbjZYk_yNiyWO3DFTu7CtZCNcoWlnmewXt2Dn96RgNjT6dgziBCfL2dOmpq4yEw0rokT7WI4iQtEm5HON5Esjh0Ste7GhUxDIALWWDRk7KOC6xXxjuzBb322auV___h1Og6MH9jkfNFxWNyHb_3e4e77uE3bEFcsxf3VpHmZVEIYTm0lNQISKQ3TBS1tnljKE2srjc-MlVKXomIZq6hxxDgmsRkz2RZsTJqJfQhE436a5FQjBtF5kllZMoQbla2xkdxaHcGLbvbUNLBzqM6qcSOs_AhH8MpP7FpEz06cPxtnajQcqMPPg6PBaPhBjSLY8jO_FkxzXjguiwi2u6WgWh2fKyo8txBL8fXz9WvUTvfLRU9ss_QyiA95VhSXygju8iTKCB6EZXbWgYJTR2gUwWu_mi75SrX75d2-Lz36F-FncP1gr68-7Q8_PoYbCAeL4N64DRuL2dI-gatzs3zqNesP4zIm_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+empirical+models+of+species+colonization+under+multiple+threatening+processes+to+identify+complementary+threat%E2%80%90mitigation+strategies&rft.jtitle=Conservation+biology&rft.au=Tulloch%2C+Ayesha+I.T.&rft.au=Mortelliti%2C+Alessio&rft.au=Kay%2C+Geoffrey+M.&rft.au=Florance%2C+Daniel&rft.date=2016-08-01&rft.issn=0888-8892&rft.eissn=1523-1739&rft.volume=30&rft.issue=4&rft.spage=867&rft.epage=882&rft_id=info:doi/10.1111%2Fcobi.12672&rft.externalDBID=10.1111%252Fcobi.12672&rft.externalDocID=COBI12672
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon