Effects of Propylene Glycol on Negative Energy Balance of Postpartum Dairy Cows

With the improvement in the intense genetic selection of dairy cows, advanced management strategies, and improved feed quality and disease control, milk production level has been greatly improved. However, the negative energy balance (NEB) is increasingly serious at the postpartum stage because the...

Full description

Saved in:
Bibliographic Details
Published in:Animals (Basel) Vol. 10; no. 9; p. 1526
Main Authors: Zhang, Fan, Nan, Xuemei, Wang, Hui, Zhao, Yiguang, Guo, Yuming
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-09-2020
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the improvement in the intense genetic selection of dairy cows, advanced management strategies, and improved feed quality and disease control, milk production level has been greatly improved. However, the negative energy balance (NEB) is increasingly serious at the postpartum stage because the intake of nutrients cannot meet the demand of quickly improved milk production. The NEB leads to a large amount of body fat mobilization and consequently the elevated production of ketones, which causes metabolic diseases such as ketosis and fatty liver. The high milk production of dairy cows in early lactation aggravates NEB. The metabolic diseases lead to metabolic disorders, a decrease in reproductive performance, and lactation performance decline, seriously affecting the health and production of cows. Propylene glycol (PG) can alleviate NEB through gluconeogenesis and inhibit the synthesis of ketone bodies. In addition, PG improves milk yield, reproduction, and immune performance by improving plasma glucose and liver function in ketosis cows, and reduces milk fat percentage. However, a large dose of PG (above 500 g/d) has toxic and side effects in cows. The feeding method used was an oral drench. The combination of PG with some other additives can improve the effects in preventing ketosis. Overall, the present review summarizes the recent research progress in the impacts of NEB in dairy cows and the properties of PG in alleviating NEB and reducing the risk of ketosis.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:2076-2615
2076-2615
DOI:10.3390/ani10091526