A Real-Time Convolutional Neural Network Based Speech Enhancement for Hearing Impaired Listeners Using Smartphone
This paper presents a Speech Enhancement (SE) technique based on multi-objective learning convolutional neural network to improve the overall quality of speech perceived by Hearing Aid (HA) users. The proposed method is implemented on a smartphone as an application that performs real-time SE. This a...
Saved in:
Published in: | IEEE access Vol. 7; pp. 78421 - 78433 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a Speech Enhancement (SE) technique based on multi-objective learning convolutional neural network to improve the overall quality of speech perceived by Hearing Aid (HA) users. The proposed method is implemented on a smartphone as an application that performs real-time SE. This arrangement works as an assistive tool to HA. A multi-objective learning architecture including primary and secondary features uses a mapping-based convolutional neural network (CNN) model to remove noise from a noisy speech spectrum. The algorithm is computationally fast and has a low processing delay which enables it to operate seamlessly on a smartphone. The steps and the detailed analysis of real-time implementation are discussed. The proposed method is compared with existing conventional and neural network-based SE techniques through speech quality and intelligibility metrics in various noisy speech conditions. The key contribution of this paper includes the realization of CNN SE model on a smartphone processor that works seamlessly with HA. The experimental results demonstrate significant improvements over the state-of-the-art techniques and reflect the usability of the developed SE application in noisy environments. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2019.2922370 |