Inefficient megakaryopoiesis in mouse hematopoietic stem–progenitor cells lacking T-bet
Differentiation of hematopoietic stem–progenitor cells (HSPCs) into mature blood lineages results from the translation of extracellular signals into changes in the expression levels of transcription factors controlling cell fate decisions. Multiple transcription factor families are known to be invol...
Saved in:
Published in: | Experimental hematology Vol. 44; no. 3; pp. 194 - 206.e17 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier Inc
01-03-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Differentiation of hematopoietic stem–progenitor cells (HSPCs) into mature blood lineages results from the translation of extracellular signals into changes in the expression levels of transcription factors controlling cell fate decisions. Multiple transcription factor families are known to be involved in hematopoiesis. Although the T-box transcription factor family is known to be involved in the differentiation of multiple tissues, and expression of T-bet, a T-box family transcription factor, has been observed in HSPCs, T-box family transcription factors do not have a described role in HSPC differentiation. In the current study, we address the functional consequences of T-bet expression in mouse HSPCs. T-bet protein levels differed among HSPC subsets, with highest levels observed in megakaryo-erythroid progenitor cells (MEPs), the common precursor to megakaryocytes and erythrocytes. HSPCs from T-bet-deficient mice exhibited a defect in megakaryocytic differentiation when cultured in the presence of thrombopoietin. In contrast, erythroid differentiation in culture in the presence of erythropoietin was not substantially altered in T-bet-deficient HSPCs. Differences observed with respect to megakaryocyte number and maturity, as assessed by level of expression of CD41 and CD61, and megakaryocyte ploidy, in T-bet-deficient HSPCs were not associated with altered proliferation or survival in culture. Gene expression micro-array analysis of MEPs from T-bet-deficient mice exhibited diminished expression of multiple genes associated with the megakaryocyte lineage. These data advance our understanding of the transcriptional regulation of megakaryopoiesis by supporting a new role for T-bet in the differentiation of MEPs into megakaryocytes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0301-472X 1873-2399 |
DOI: | 10.1016/j.exphem.2015.11.003 |