Terahertz radiation by quantum interference of excitons in a one-dimensional Mott insulator

Nearly monocyclic terahertz waves are used for investigating elementary excitations and for controlling electronic states in solids. They are usually generated via second-order optical nonlinearity by injecting a femtosecond laser pulse into a nonlinear optical crystal. In this framework, however, i...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 14; no. 1; p. 6229
Main Authors: Miyamoto, Tatsuya, Kondo, Akihiro, Inaba, Takeshi, Morimoto, Takeshi, You, Shijia, Okamoto, Hiroshi
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 13-10-2023
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nearly monocyclic terahertz waves are used for investigating elementary excitations and for controlling electronic states in solids. They are usually generated via second-order optical nonlinearity by injecting a femtosecond laser pulse into a nonlinear optical crystal. In this framework, however, it is difficult to control phase and frequency of terahertz waves. Here, we show that in a one-dimensional Mott insulator of a nickel-bromine chain compound a terahertz wave is generated with high efficiency via strong electron modulations due to quantum interference between odd-parity and even-parity excitons produced by two-color femtosecond pulses. Using this method, one can control all of the phase, frequency, and amplitude of terahertz waves by adjusting the creation-time difference of two excitons with attosecond accuracy. This approach enables to evaluate the phase-relaxation time of excitons under strong electron correlations in Mott insulators. Moreover, phase- and frequency-controlled terahertz pulses are beneficial for coherent electronic-state controls with nearly monocyclic terahertz waves. THz pulses with tuneable properties are desirable for manipulating electronic states in materials. The authors report generation of THz pulses with phase, frequency, and amplitude control by tuning exciton interference in a 1D Mott insulator of transition metal complex and provide insight into exciton dynamics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-41463-8