Thermally Driven Transport and Relaxation Switching Self‐Powered Electromagnetic Energy Conversion

Electromagnetic energy radiation is becoming a “health‐killer” of living bodies, especially around industrial transformer substation and electricity pylon. Harvesting, converting, and storing waste energy for recycling are considered the ideal ways to control electromagnetic radiation. However, heat...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 29; pp. e1800987 - n/a
Main Authors: Cao, Maosheng, Wang, Xixi, Cao, Wenqiang, Fang, Xiaoyong, Wen, Bo, Yuan, Jie
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 19-07-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electromagnetic energy radiation is becoming a “health‐killer” of living bodies, especially around industrial transformer substation and electricity pylon. Harvesting, converting, and storing waste energy for recycling are considered the ideal ways to control electromagnetic radiation. However, heat‐generation and temperature‐rising with performance degradation remain big problems. Herein, graphene‐silica xerogel is dissected hierarchically from functions to “genes,” thermally driven relaxation and charge transport, experimentally and theoretically, demonstrating a competitive synergy on energy conversion. A generic approach of “material genes sequencing” is proposed, tactfully transforming the negative effects of heat energy to superiority for switching self‐powered and self‐circulated electromagnetic devices, beneficial for waste energy harvesting, conversion, and storage. Graphene networks with “well‐sequencing genes” (w = Pc/Pp > 0.2) can serve as nanogenerators, thermally promoting electromagnetic wave absorption by 250%, with broadened bandwidth covering the whole investigated frequency. This finding of nonionic energy conversion opens up an unexpected horizon for converting, storing, and reusing waste electromagnetic energy, providing the most promising way for governing electromagnetic pollution with self‐powered and self‐circulated electromagnetic devices. Thermally driven relaxation and charge transport are demonstrated with a competitive synergy on electromagnetic energy conversion, based on “sequencing genes” of graphene‐silica. It tactfully transforms negative effect of heat energy to superiority of switching self‐powered electromagnetic energy conversion, opening a new horizon of governing electromagnetic pollution.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1613-6810
1613-6829
DOI:10.1002/smll.201800987