Photo-responsive hydrogel-based re-programmable metamaterials
This paper explores a novel programmable metamaterial using stimuli-responsive hydrogels with a demonstration of bandgap formation and tuning. Specifically, a photo-responsive hydrogel beam that can achieve re-programmable periodicity in geometric and material properties through patterned light irra...
Saved in:
Published in: | Scientific reports Vol. 12; no. 1; p. 13033 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
29-07-2022
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper explores a novel programmable metamaterial using stimuli-responsive hydrogels with a demonstration of bandgap formation and tuning. Specifically, a photo-responsive hydrogel beam that can achieve re-programmable periodicity in geometric and material properties through patterned light irradiation is designed. Hydrogels consist of polymeric networks and water molecules. Many unique properties of hydrogels, including bio-compatibility, stimuli-responsiveness, and low dissipation make them ideal for enabling re-programmable metamaterials for manipulating structural dynamic response and wave propagation characteristics. Bandgap generation and tunability in photo-responsive hydrogel-based metamaterial (in the form of a diatomic phononic chain) as well as the effects of system parameters such as light exposure pattern and photo-sensitive group concentration on the bandgap width and center frequency are systematically studied. In agreement with finite-element model simulations, it is observed that an increase in light exposure region size reduces both the bandgap width and center frequency, while an increase in the concentration of photo-sensitive group increases bandgap width, attenuation and reduces its center frequency. This work unveils the potential of stimuli-response hydrogels as a new class of low-loss soft metamaterials, unlike most other soft materials that are too lossy to sustain and exploit wave phenomena. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-15453-7 |