Fully integrated topological electronics
Topological insulators (TIs) have attracted significant attention in photonics and acoustics due to their unique physical properties and promising applications. Electronics has recently emerged as an exciting arena to study various topological phenomena because of its advantages in building complex...
Saved in:
Published in: | Scientific reports Vol. 12; no. 1; p. 13410 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
04-08-2022
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Topological insulators (TIs) have attracted significant attention in photonics and acoustics due to their unique physical properties and promising applications. Electronics has recently emerged as an exciting arena to study various topological phenomena because of its advantages in building complex topological structures. Here, we explore TIs on an integrated circuit (IC) platform with a standard complementary metal-oxide-semiconductor technology. Based on the Su–Schrieffer–Heeger model, we design a fully integrated topological circuit chain using multiple capacitively-coupled inductor–capacitor resonators. We perform comprehensive post-layout simulations on its physical layout to observe and evaluate the salient topological features. Our results demonstrate the existence of the topological edge state and the remarkable robustness of the edge state against various defects. Our work shows the feasibility and promise of studying TIs with IC technology, paving the way for future explorations of large-scale topological electronics on the scalable IC platform. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-17010-8 |