Impact of an Updated Carbon Bond Mechanism on Predictions from the CMAQ Modeling System Preliminary Assessment

An updated and expanded version of the Carbon Bond mechanism (CB05) has been incorporated into the Community Multiscale Air Quality (CMAQ) modeling system to more accurately simulate wintertime, pristine, and high-altitude situations. The CB05 mechanism has nearly 2 times the number of reactions rel...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied meteorology and climatology Vol. 47; no. 1; pp. 3 - 14
Main Authors: Sarwar, Golam, Luecken, Deborah, Yarwood, Greg, Whitten, Gary Z., Carter, William P. L.
Format: Journal Article
Language:English
Published: Boston, MA American Meteorological Society 01-01-2008
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An updated and expanded version of the Carbon Bond mechanism (CB05) has been incorporated into the Community Multiscale Air Quality (CMAQ) modeling system to more accurately simulate wintertime, pristine, and high-altitude situations. The CB05 mechanism has nearly 2 times the number of reactions relative to the previous version of the Carbon Bond mechanism (CB-IV). While the expansions do provide more detailed treatment of urban areas, most of the new reactions involve biogenics, toxics, and species potentially important to particulate formation and acid deposition. Model simulations were performed using the CB05 and the CB-IV mechanisms for the winter and summer of 2001. For winter with the CB05 mechanism, ozone, aerosol nitrate, and aerosol sulfate concentrations were within 1% of the results obtained with the CB-IV mechanism. Organic carbon concentrations were within 2% of the results obtained with the CB-IV mechanism. However, formaldehyde and hydrogen peroxide concentrations were lower by 25% and 32%, respectively, during winter with the CB05 mechanism. For the summer, ozone concentrations increased by 8% with the CB05 mechanism relative to the CB-IV mechanism. The aerosol sulfate, aerosol nitrate, and organic carbon concentrations with the CB05 mechanism decreased by 8%, 2%, and 10%, respectively. The formaldehyde and hydrogen peroxide concentrations with the CB05 mechanism were lower by 12% and 47%, respectively, during summer. Model performance with the CB05 mechanism improved at high-altitude conditions and in rural areas for ozone. Model performance also improved for organic carbon with the CB05 mechanism.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1558-8424
1558-8432
DOI:10.1175/2007jamc1393.1