Structure, function and translational relevance of aquaporin dual water and ion channels

Aquaporins have been assumed to be selective for water alone, and aquaglyceroporins are accepted as carrying water and small uncharged solutes including glycerol. This review presents an expanded view of aquaporins as channels with more complex mechanisms of regulation and diverse repertoires of sub...

Full description

Saved in:
Bibliographic Details
Published in:Molecular aspects of medicine Vol. 33; no. 5-6; pp. 553 - 561
Main Authors: Yool, Andrea J., Campbell, Ewan M.
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01-10-2012
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aquaporins have been assumed to be selective for water alone, and aquaglyceroporins are accepted as carrying water and small uncharged solutes including glycerol. This review presents an expanded view of aquaporins as channels with more complex mechanisms of regulation and diverse repertoires of substrate permeabilities than were originally appreciated in the early establishment of the field. The role of aquaporins as dual water and gated ion channels is likely to have physiological and potentially translational relevance, and can be evaluated with newly developed molecular and pharmacological tools. Ion channel activity has been shown for Aquaporins -0, -1, and -6, Drosphila Big Brain, and plant Nodulin-26. Although the concept of ion channel function in aquaporins remains controversial, research advances are beginning to define not only the ion channel function but also the detailed molecular mechanisms that govern and mediate the multifunctional capabilities. With regard to physiological relevance, the adaptive benefit of expression of ion channel activity in aquaporins, implied by amino acid sequence conservation of the ion channel gating domains, suggests they provide more than water or glycerol and solute transport. Dual ion and water channels are of interest for understanding the modulation of transmembrane fluid gradients, volume regulation, and possible signal transduction in tissues expressing classes of aquaporins that have the dual function capability. Other aquaporin classes might be found in future work to have ion channel activities, pending identification of the possible signaling pathways that could govern activation.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:0098-2997
1872-9452
DOI:10.1016/j.mam.2012.02.001