Characterization and Evaluation of Transgenic Rice Pyramided with the Pi Genes Pib, Pi25 and Pi54

Background Emergence of new pathogen strains of Magnaporthe oryzae is a major reason for recurrent failure of the resistance mediated by a single resistance gene ( Pi ) in rice. Stacking various Pi genes in the genome through marker-assisted selection is thus an effective strategy in rice breeding f...

Full description

Saved in:
Bibliographic Details
Published in:Rice (New York, N.Y.) Vol. 14; no. 1; p. 78
Main Authors: Peng, Meifang, Lin, Xiaomin, Xiang, Xiaoli, Ren, Huibo, Fan, Xiaoli, Chen, Kegui
Format: Journal Article
Language:English
Published: New York Springer US 01-12-2021
Springer Nature B.V
SpringerOpen
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Emergence of new pathogen strains of Magnaporthe oryzae is a major reason for recurrent failure of the resistance mediated by a single resistance gene ( Pi ) in rice. Stacking various Pi genes in the genome through marker-assisted selection is thus an effective strategy in rice breeding for achieving durable resistance against the pathogen. However, the effect of pyramiding of multiple Pi genes using transgenesis still remains largely unknown. Results Three Pi genes Pib , Pi25 and Pi54 were transferred together into two rice varieties, the indica variety Kasalath and the japonica variety Zhenghan 10. Transgenic plants of both Kasalath and Zhenghan 10 expressing the Pi transgenes showed imparted pathogen resistance. All the transgenic lines of both cultivars also exhibited shorter growth periods with flowering 2–4 days early, and shorter plant heights with smaller panicle. Thus, pyramiding of the Pi genes resulted in reduced grain yields in both rice cultivars. However, tiller numbers and grain weight were generally similar between the pyramided lines and corresponding parents. A global analysis of gene expression by RNA-Seq suggested that both enhancement and, to a lesser extent, inhibition of gene transcription occurred in the pyramided plants. A total of 264 and 544 differentially expressed genes (DEGs) were identified in Kasalath and Zhenghan 10, respectively. Analysis of the DEGs suggested that presence of the Pi transgenes did not alter gene expression only related to disease resistance, but also impacted many gene transcriptions in the pathways for plant growth and development, in which several were common for both Kasalath and Zhenghan 10. Conclusion Pyramiding of the Pi genes Pib , Pi25 and Pi54 via transgenesis is a potentially promising approach for improving rice resistance to the pathogen Magnaporthe oryzae . However, pleiotropic effects of the Pi genes could potentially result in yield loss. These findings support the idea that immunity is often associated with yield penalties. Rational combination of the Pi genes based on the genetic background may be important to balance yield and disease resistance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1939-8425
1939-8433
1934-8037
DOI:10.1186/s12284-021-00512-w