M1BP cooperates with CP190 to activate transcription at TAD borders and promote chromatin insulator activity

Genome organization is driven by forces affecting transcriptional state, but the relationship between transcription and genome architecture remains unclear. Here, we identified the Drosophila transcription factor Motif 1 Binding Protein (M1BP) in physical association with the gypsy chromatin insulat...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 12; no. 1; p. 4170
Main Authors: Bag, Indira, Chen, Shue, Rosin, Leah F., Chen, Yang, Liu, Chen-Yu, Yu, Guo-Yun, Lei, Elissa P.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 07-07-2021
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Genome organization is driven by forces affecting transcriptional state, but the relationship between transcription and genome architecture remains unclear. Here, we identified the Drosophila transcription factor Motif 1 Binding Protein (M1BP) in physical association with the gypsy chromatin insulator core complex, including the universal insulator protein CP190. M1BP is required for enhancer-blocking and barrier activities of the gypsy insulator as well as its proper nuclear localization. Genome-wide, M1BP specifically colocalizes with CP190 at Motif 1-containing promoters, which are enriched at topologically associating domain (TAD) borders. M1BP facilitates CP190 chromatin binding at many shared sites and vice versa. Both factors promote Motif 1-dependent gene expression and transcription near TAD borders genome-wide. Finally, loss of M1BP reduces chromatin accessibility and increases both inter- and intra-TAD local genome compaction. Our results reveal physical and functional interaction between CP190 and M1BP to activate transcription at TAD borders and mediate chromatin insulator-dependent genome organization. Transcriptional state plays a role in genome organization, however factors that link these processes are not well known. Here, the authors show Drosophila transcription factor Motif 1-binding protein (M1BP) interacts with the insulator protein CP190 to promote insulator function and activate Motif 1-dependent transcription at topologically associating domain (TAD) borders.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-24407-y