Predictive Factors of Piperacillin Exposure and the Impact on Target Attainment after Continuous Infusion Administration to Critically Ill Patients
Critically ill patients undergo significant pathophysiological changes that affect antibiotic pharmacokinetics. Piperacillin/tazobactam administered by continuous infusion (CI) improves pharmacokinetic/pharmacodynamic (PK/PD) target attainment. This study aimed to characterize piperacillin PK after...
Saved in:
Published in: | Antibiotics (Basel) Vol. 12; no. 3; p. 531 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
01-03-2023
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Critically ill patients undergo significant pathophysiological changes that affect antibiotic pharmacokinetics. Piperacillin/tazobactam administered by continuous infusion (CI) improves pharmacokinetic/pharmacodynamic (PK/PD) target attainment. This study aimed to characterize piperacillin PK after CI administration of piperacillin/tazobactam in critically ill adult patients with preserved renal function and to determine the empirical optimal dosing regimen. A total of 218 piperacillin concentrations from 106 patients were simultaneously analyzed through the population PK approach. A two-compartment linear model best described the data. Creatinine clearance (CL
) estimated by CKD-EPI was the covariate, the most predictive factor of piperacillin clearance (CL) interindividual variability. The mean (relative standard error) parameter estimates for the final model were: CL: 12.0 L/h (6.03%); central and peripheral compartment distribution volumes: 20.7 L (8.94%) and 62.4 L (50.80%), respectively; intercompartmental clearance: 4.8 L/h (26.4%). For the PK/PD target of 100%
T
, 12 g of piperacillin provide a probability of target attainment > 90% for MIC < 16 mg/L, regardless of CL
, but higher doses are needed for MIC = 16 mg/L when CL
> 100 mL/min. For 100%
T
, the highest dose (24 g/24 h) was not sufficient to ensure adequate exposure, except for MICs of 1 and 4 mg/L. Our model can be used as a support tool for initial dose guidance and during therapeutic drug monitoring. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ISSN: | 2079-6382 2079-6382 |
DOI: | 10.3390/antibiotics12030531 |