Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins

To determine the heat transfer coefficient by natural convection for specific geometries, experimental correlations are used. No correlations were found in the literature for the geometries studied in this work. These geometries consisted of a cylindrical module of 88 mm of diameter and 315 mm heigh...

Full description

Saved in:
Bibliographic Details
Published in:Applied thermal engineering Vol. 28; no. 13; pp. 1676 - 1686
Main Authors: Castell, Albert, Solé, Cristian, Medrano, Marc, Roca, Joan, Cabeza, Luisa F., García, Daniel
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01-09-2008
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To determine the heat transfer coefficient by natural convection for specific geometries, experimental correlations are used. No correlations were found in the literature for the geometries studied in this work. These geometries consisted of a cylindrical module of 88 mm of diameter and 315 mm height with external vertical fins of 310 mm height and 20 and 40 mm length. To determine the heat transfer coefficient by natural convection, experimental work was done. This module, containing PCM (sodium acetate trihydrate), was situated in the middle upper part of a cylindrical water tank of 440 mm of diameter and 450 mm height. The calculated heat transfer coefficient changed by using external fins, as the heat transfer surface was increased. The temperature variation of the PCM and the water are presented as a function of time, and the heat transfer coefficient for different fins is presented as a function of the temperature difference. Experimental correlations were obtained, presenting the Nusselt number as a function of different dimensionless numbers. Different correlations were analysed to find which one fit better to the experimental data.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1359-4311
1873-5606
DOI:10.1016/j.applthermaleng.2007.11.004