Porins and small-molecule translocation across the outer membrane of Gram-negative bacteria

Gram-negative bacteria and their complex cell envelope, which comprises an outer membrane and an inner membrane, are an important and attractive system for studying the translocation of small molecules across biological membranes. In the outer membrane of Enterobacteriaceae, trimeric porins control...

Full description

Saved in:
Bibliographic Details
Published in:Nature reviews. Microbiology Vol. 18; no. 3; pp. 164 - 176
Main Authors: Vergalli, Julia, Bodrenko, Igor V., Masi, Muriel, Moynié, Lucile, Acosta-Gutiérrez, Silvia, Naismith, James H., Davin-Regli, Anne, Ceccarelli, Matteo, van den Berg, Bert, Winterhalter, Mathias, Pagès, Jean-Marie
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01-03-2020
Nature Publishing Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Gram-negative bacteria and their complex cell envelope, which comprises an outer membrane and an inner membrane, are an important and attractive system for studying the translocation of small molecules across biological membranes. In the outer membrane of Enterobacteriaceae, trimeric porins control the cellular uptake of small molecules, including nutrients and antibacterial agents. The relatively slow porin-mediated passive uptake across the outer membrane and active efflux via efflux pumps in the inner membrane creates a permeability barrier. The synergistic action of outer membrane permeability, efflux pump activities and enzymatic degradation efficiently reduces the intracellular concentrations of small molecules and contributes to the emergence of antibiotic resistance. In this Review, we discuss recent advances in our understanding of the molecular and functional roles of general porins in small-molecule translocation in Enterobacteriaceae and consider the crucial contribution of porins in antibiotic resistance. In the outer membrane, trimeric porins control the cellular uptake of small molecules, including nutrients and antibacterial agents. In this Review, Pagès and colleagues discuss advances in our understanding of the roles of general porins in small-molecule translocation in Enterobacteriaceae and consider the crucial contribution of porins in antibiotic resistance.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:1740-1526
1740-1534
DOI:10.1038/s41579-019-0294-2