Inverse elastostatic stress analysis in pre-deformed biological structures: Demonstration using abdominal aortic aneurysms
Abstract In stress analysis of membrane-like biological structures, the geometry constructed from in vivo image, which often corresponds to a deformed state, is routinely taken as the initial stress-free geometry. In this paper, we show that this limitation can be completely removed using an inverse...
Saved in:
Published in: | Journal of biomechanics Vol. 40; no. 3; pp. 693 - 696 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Ltd
01-01-2007
Elsevier Limited |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract In stress analysis of membrane-like biological structures, the geometry constructed from in vivo image, which often corresponds to a deformed state, is routinely taken as the initial stress-free geometry. In this paper, we show that this limitation can be completely removed using an inverse elastostatic approach, namely, a method for finding the initial geometry of an elastic body from a given deformed state. We demonstrate the utility of the inverse approach using a patient-specific abdominal aortic aneurysm model, and identify the scope of error in stress estimation in the conventional approach within a realistic range of material parameter variations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9290 1873-2380 |
DOI: | 10.1016/j.jbiomech.2006.01.015 |