Candida albicans alters the bacterial microbiome of early in vitro oral biofilms

The yeast Candida albicans is an oral commensal microorganism, occurring in the oral cavity of 50-70% of healthy individuals. Its effect on oral ecology has mostly been studied using dual-species models, which disregards the complex nature of oral biofilms. The aim of this study was to culture C. al...

Full description

Saved in:
Bibliographic Details
Published in:Journal of oral microbiology Vol. 9; no. 1; pp. 1270613 - 10
Main Authors: Janus, M. M., Crielaard, W., Volgenant, C. M. C., van der Veen, M. H., Brandt, B. W., Krom, B. P.
Format: Journal Article
Language:English
Published: United States Taylor & Francis 01-01-2017
Taylor & Francis Ltd
Taylor & Francis Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The yeast Candida albicans is an oral commensal microorganism, occurring in the oral cavity of 50-70% of healthy individuals. Its effect on oral ecology has mostly been studied using dual-species models, which disregards the complex nature of oral biofilms. The aim of this study was to culture C. albicans in a complex model to study its effect on oral biofilms. Biofilms, inoculated using pooled stimulated saliva with or without addition of C. albicans, were grown under anaerobic, aerobic, or aerobic +5% CO 2 conditions. Red autofluorescence was quantified using a spectrophotometer and visualized in fluorescence photographs. The microbiome of 5 h biofilms was determined using 16S rDNA sequencing. C. albicans was only able to proliferate in biofilms grown under aerobic conditions. After 48 h, C. albicans did not induce differences in total biofilm formation, lactic acid accumulation (cariogenic phenotype) or protease activity (periodontitis phenotype). In vitro, anaerobically grown biofilms developed red autofluorescence, irrespective of inoculum. However, under aerobic conditions, only C. albicans-containing biofilms showed red autofluorescence. Facultative or strict anaerobic Veillonella, Prevotella, Leptotrichia, and Fusobacterium genera were significantly more abundant in biofilms with C. albicans. Biofilms without C. albicans contained more of the aerobic and facultative anaerobic genera Neisseria, Rothia, and Streptococcus. The presence of C. albicans alters the bacterial microbiome in early in vitro oral biofilms, resulting in the presence of strictly anaerobic bacteria under oxygen-rich conditions. This in vitro study illustrates that C. albicans should not be disregarded in healthy oral ecosystems, as it has the potential to influence bacteria significantly.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2000-2297
2000-2297
DOI:10.1080/20002297.2016.1270613