Ultrasound assisted electrodeposition of photocatalytic antibacterial MoS2-Zn coatings controlled by sodium dodecyl sulfate
[Display omitted] •Novel MoS2-Zn coatings were successfully obtained by ultrasound and SDS assistance.•The MoS2-Zn coatings showed highly enhanced photocatalytic antibacterial property.•Ultrasound and SDS would promote the loading concentration of MoS2 in the coatings.••O2– (dominant) and •OH (subor...
Saved in:
Published in: | Ultrasonics sonochemistry Vol. 102; p. 106749 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-01-2024
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
•Novel MoS2-Zn coatings were successfully obtained by ultrasound and SDS assistance.•The MoS2-Zn coatings showed highly enhanced photocatalytic antibacterial property.•Ultrasound and SDS would promote the loading concentration of MoS2 in the coatings.••O2– (dominant) and •OH (subordinate) were responsible for the biocidal property.
Photocatalytic MoS2 with visible light response is considered as a promising bactericidal material owing to its non–toxicity and high antibacterial efficiency. However, photocatalysts always exist as powder, so it is difficult to settle photocatalysts on the metal surface, which limits their application in aqueous environments. To solve this problem, ultrasound and sodium dodecyl sulfate (SDS) were introduced into the co-deposition process of MoS2 and zinc matrix, so that novel MoS2–Zn coatings were obtained. In this process, ultrasound and SDS strongly promoted the dispersion and adsorption of MoS2 on the co-depositing surfaces. Then MoS2 were proved to be composited into the Zn matrix with effective structures, and the addition of SDS effectively increased the loading content of MoS2 in the MoS2–Zn coatings. Besides, the antibacterial performance of the MoS2–Zn coatings was evaluated with three typical fouling bacteria E.coli, S.aureus and B.wiedmannii. The MoS2–Zn coating showed high and broad–spectrum antibacterial properties with over 98 % inhibition rate against these three bacteria. Furthermore, it is proved that the MoS2–Zn coatings generated superoxide (·O2−) and hydroxyl radicals (·OH) under visible light, which played the dominant and subordinate roles in the antibacterial process, respectively. The MoS2–Zn coatings also showed high antibacterial stability after four “light–dark” cycles. According to the results of the attached bacteria, the MoS2–Zn coatings were considered to effectively repel the living pelagic bacteria instead of killing the attached ones, which was highly environmentally friendly. The obtained MoS2–Zn coatings were considered promising in biofilm inhibiting and marine antifouling fields. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1350-4177 1873-2828 1873-2828 |
DOI: | 10.1016/j.ultsonch.2023.106749 |