Muscle loss phenotype in COPD is associated with adverse outcomes in the UK Biobank

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disorder with systemic consequences that can cause a muscle loss phenotype (MLP), which is characterized by the loss of muscle mass, muscle strength, or loss of both muscle and fat mass. There are limited data comparing the indiv...

Full description

Saved in:
Bibliographic Details
Published in:BMC pulmonary medicine Vol. 24; no. 1; p. 186
Main Authors: Attaway, Amy H, Lopez, Rocio, Welch, Nicole, Bellar, Annette, Hatipoğlu, Umur, Zein, Joe, Engelen, Marielle Pkj, Dasarathy, Srinivasan
Format: Journal Article
Language:English
Published: England BioMed Central Ltd 17-04-2024
BioMed Central
BMC
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disorder with systemic consequences that can cause a muscle loss phenotype (MLP), which is characterized by the loss of muscle mass, muscle strength, or loss of both muscle and fat mass. There are limited data comparing the individual traits of MLP with clinical outcomes in a large unbiased cohort of COPD patients. Our aim was to determine the proportion of patients who met criteria for MLP in an unbiased sample of COPD patients at the population-level. We also determined if specific MLP features were associated with all-cause and COPD-related mortality. A retrospective population-based cohort analysis of the UK Biobank was performed. COPD was defined by a FEV1/FVC ratio < 0.7, physician established diagnosis of COPD, or those with a COPD-related hospitalization before baseline assessment. MLP included one or more of the following: 1) Low fat-free mass index (FFMI) on bioelectric impedance analysis (BIA) or 2) Appendicular skeletal muscle index (ASMI) on BIA, 3) Low muscle strength defined by handgrip strength (HGS), or 4) Low muscle and fat mass based on body mass index (BMI). Cox regression was used to determine the association between MLP and all-cause or COPD-related mortality. All models were adjusted for sex, age at assessment, ethnicity, BMI, alcohol use, smoking status, prior cancer diagnosis and FEV1/FVC ratio. There were 55,782 subjects (56% male) with COPD followed for a median of 70.1 months with a mean(± SD) age at assessment of 59 ± 7.5 years, and FEV1% of 79.2 ± 18.5. Most subjects had mild (50.4%) or moderate (42.8%) COPD. Many patients had evidence of a MLP, which was present in 53.4% of COPD patients (34% by ASMI, 26% by HGS). Of the 5,608 deaths in patients diagnosed with COPD, 907 were COPD-related. After multivariate adjustment, COPD subjects with MLP had a 30% higher hazard-ratio for all-cause death and 70% higher hazard-ratio for COPD-related death. Evidence of MLP is common in a large population-based cohort of COPD and is associated with higher risk for all-cause and COPD-related mortality.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1471-2466
1471-2466
DOI:10.1186/s12890-024-02999-7