Nanoindentation Study on the Creep Characteristics and Hardness of Ion-Irradiated Alloys
The Hastelloy N alloy, Alloy 800H and 316H stainless steel were irradiated by Xe20+ ion irradiation with energy of 4 MeV at room temperature (peak damage ranging from 0.5 to 10 dpa). The micromechanical properties, hardness and creep plasticity, of these three investigated alloys were characterized...
Saved in:
Published in: | Materials Vol. 13; no. 14; p. 3132 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
14-07-2020
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Hastelloy N alloy, Alloy 800H and 316H stainless steel were irradiated by Xe20+ ion irradiation with energy of 4 MeV at room temperature (peak damage ranging from 0.5 to 10 dpa). The micromechanical properties, hardness and creep plasticity, of these three investigated alloys were characterized before and after irradiation using nanoindentation. The results show that the hardness increases, and creep plasticity degrades with increasing ion dose in all the samples. In comparison, Hastelloy N has good irradiation damage resistance, while that of the 800H and 316H alloys is slightly worse. Additionally, the approximate positive relationship between irradiation hardening and creep plasticity degradation means that the property of creep plasticity of irradiated materials can be reflected from the nanohardness measurement for the heavy ion irradiation cases. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma13143132 |