A consistent, quantifiable, and graded rat lumbosacral spinal cord injury model

The purpose of this study is to develop a rat lumbosacral spinal cord injury (SCI) model that causes consistent motoneuronal loss and behavior deficits. Most SCI models focus on the thoracic or cervical spinal cord. Lumbosacral SCI accounts for about one third of human SCI but no standardized lumbos...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neurotrauma Vol. 32; no. 12; p. 875
Main Authors: Wen, Junxiang, Sun, Dongming, Tan, Jun, Young, Wise
Format: Journal Article
Language:English
Published: United States 15-06-2015
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The purpose of this study is to develop a rat lumbosacral spinal cord injury (SCI) model that causes consistent motoneuronal loss and behavior deficits. Most SCI models focus on the thoracic or cervical spinal cord. Lumbosacral SCI accounts for about one third of human SCI but no standardized lumbosacral model is available for evaluating therapies. Twenty-six adult female Sprague-Dawley rats were randomized to three groups: sham (n=9), 25 mm (n=8), and 50 mm (n=9). Sham rats had laminectomy only, while 25 mm and 50 mm rats were injured by dropping a 10 g rod from a height of 25 mm or 50 mm, respectively, onto the L4-5 spinal cord at the T13/L1 vertebral junction. We measured footprint length (FL), toe spreading (TS), intermediate toe spreading (ITS), and sciatic function index (SFI) from walking footprints, and static toe spreading (STS), static intermediate toe spreading (SITS), and static sciatic index (SSI) from standing footprints. At six weeks, we assessed neuronal and white matter loss, quantified axons, diameter, and myelin thickness in the peroneal and tibial nerves, and measured cross-sectional areas of tibialis anterior and gastrocnemius muscle fibers. The result shows that peroneal and tibial motoneurons were respectively distributed in 4.71 mm and 5.01 mm columns in the spinal cord. Dropping a 10-g weight from 25 mm or 50 mm caused 1.5 mm or 3.75 mm gaps in peroneal and tibial motoneuronal columns, respectively, and increased spinal cord white matter loss. Fifty millimeter contusions significantly increased FL and reduced TS, ITS, STS, SITS, SFI, and SSI more than 25 mm contusions, and resulted in smaller axon and myelinated axon diameters in tibial and peroneal nerves and greater atrophy of gastrocnemius and anterior tibialis muscles, than 25 mm contusions. This model of lumbosacral SCI produces consistent and graded loss of white matter, motoneuronal loss, peripheral nerve axonal changes, and anterior tibialis and gastrocnemius muscles atrophy in rats.
ISSN:1557-9042
DOI:10.1089/neu.2013.3321