Facile Regulation of Shell Thickness of the Au@MOF Core-Shell Composites for Highly Sensitive Surface-Enhanced Raman Scattering Sensing

Metal-organic frameworks (MOFs)-based core-shell composites have advanced the development of surface-enhanced Raman scattering (SERS) analysis, which originates from the promising structural characteristics of the outer framework material as well as the inherent plasmonic properties of the novel met...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 22; no. 18; p. 7039
Main Authors: Li, Boen, Liu, Yaling, Cheng, Jie
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-09-2022
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metal-organic frameworks (MOFs)-based core-shell composites have advanced the development of surface-enhanced Raman scattering (SERS) analysis, which originates from the promising structural characteristics of the outer framework material as well as the inherent plasmonic properties of the novel metal structure core (for example, nanoparticle, MNP). However, the SERS effect only exists directly in the surface of MNP or restricted around the plasmonic MNP surface. Consequently, the nanoscale control of the thickness of MOF shell in hybrid core-shell substrates is highly desirable. Despite the great effects which have been made to integrate various MOF matrices with MNP for the purpose of improving the SERS activity, the nanoscale thickness control of MOF shell remains a significant challenge. Here, we report a facile regulation method that enables the Au NP to be encapsulated by a zirconium-based MOF (BUT-17) with different thickness through the controlling of synthesis parameters. This method provides a promising strategy for optimizing the activity of core-shell SERS substrates for potential trace detection.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s22187039