Expressions of the multidrug resistance-related proteins in the rat olfactory epithelium: A possible role in the phase III xenobiotic metabolizing function

The xenobiotic metabolizing system is considered to play important roles in the olfaction by the chemical homeostasis. Several phase I and phase II xenobiotic metabolizing enzymes are expressed in the olfactory epithelium in vertebrates. Multidrug resistance-related proteins (MRPs) are the phase III...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience letters Vol. 468; no. 2; pp. 98 - 101
Main Authors: Kudo, Hideaki, Doi, Yoshiaki, Fujimoto, Sunao
Format: Journal Article
Language:English
Published: Shannon Elsevier Ireland Ltd 04-01-2010
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The xenobiotic metabolizing system is considered to play important roles in the olfaction by the chemical homeostasis. Several phase I and phase II xenobiotic metabolizing enzymes are expressed in the olfactory epithelium in vertebrates. Multidrug resistance-related proteins (MRPs) are the phase III xenobiotic metabolizing pumps that eliminate some conjugated ligands from cells. However, the MRP-expressions in the olfactory epithelium have not been confirmed in the mammals. We investigated gene and protein expressions of MRP type 1 (MRP1) and type 2 (MRP2) isoforms in the adult rat olfactory epithelium in order to clarify the existence of phase III xenobiotic metabolizing pumps in the olfactory organs. Expressions of MRP1 mRNA were detected in the nasal cavity by reverse transcriptase polymerase chain reaction (RT-PCR). The nucleoside sequence of the RT-PCR products were completely identical to that found in other organs of rat. On the contrary, the analysis did not detect expressions of MRP2 mRNA in the nasal cavity. By in situ hybridization using a digoxigenin-labeled MRP1 cRNA probe, signals for MRP1 mRNA were observed preferentially in the perinuclear regions of supporting cells. However, the respiratory epithelial cells did not show the signals for MRP1 mRNA. By immunohistochemistry using a specific antibody to MRP1, MRP1-immunoreactivities were seen mainly on the supporting cells. These findings suggest that MRP1 is involved in olfaction as a part of the “olfactory signal termination” by the chemical homeostasis in the “perireceptor events” of the olfactory epithelium.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0304-3940
1872-7972
DOI:10.1016/j.neulet.2009.10.073