Multiple Autism-Linked Genes Mediate Synapse Elimination via Proteasomal Degradation of a Synaptic Scaffold PSD-95
The activity-dependent transcription factor myocyte enhancer factor 2 (MEF2) induces excitatory synapse elimination in mouse neurons, which requires fragile X mental retardation protein (FMRP), an RNA-binding protein implicated in human cognitive dysfunction and autism. We report here that protocadh...
Saved in:
Published in: | Cell Vol. 151; no. 7; pp. 1581 - 1594 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
21-12-2012
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The activity-dependent transcription factor myocyte enhancer factor 2 (MEF2) induces excitatory synapse elimination in mouse neurons, which requires fragile X mental retardation protein (FMRP), an RNA-binding protein implicated in human cognitive dysfunction and autism. We report here that protocadherin 10 (Pcdh10), an autism-spectrum disorders gene, is necessary for this process. MEF2 and FMRP cooperatively regulate the expression of Pcdh10. Upon MEF2 activation, PSD-95 is ubiquitinated by the ubiquitin E3 ligase murine double minute 2 (Mdm2) and then binds to Pcdh10, which links it to the proteasome for degradation. Blockade of the Pcdh10-proteasome interaction inhibits MEF2-induced PSD-95 degradation and synapse elimination. In FMRP-lacking neurons, elevated protein levels of eukaryotic translation elongation factor 1 α (EF1α), an Mdm2-interacting protein and FMRP target mRNA, sequester Mdm2 and prevent MEF2-induced PSD-95 ubiquitination and synapse elimination. Together, our findings reveal roles for multiple autism-linked genes in activity-dependent synapse elimination.
[Display omitted]
► The transcription factor MEF2 induces Pcdh10 that is required for synapse elimination ► MEF2 stimulates ubiquitination of PSD-95 by the ubiquitin E3 ligase Mdm2 ► Pcdh10 chaperones ubiquitinated PSD-95 to proteasome ► Elevated EF1α in Fmr1 KO neuron blocks Mdm2 and MEF2-mediated synapse elimination
The activity-dependent transcription factor MEF2 is found to induce synapse elimination through the ubiquitination and degradation of the postsynaptic scaffolding protein PSD-95. Further, the autism-linked genes protocadherin 10 and fragile X mental retardation 1 are shown to have distinct roles in PSD-95 proteosomal degradation and synapse elimination. |
---|---|
Bibliography: | http://dx.doi.org/10.1016/j.cell.2012.11.040 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 These authors contributed equally to this work. Current address: Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA |
ISSN: | 0092-8674 1097-4172 |
DOI: | 10.1016/j.cell.2012.11.040 |