Avoiding propionic acid accumulation in the anaerobic process for biohydrogen production

The accumulation of propionic acid in the anaerobic process will result in low efficiency of the methanogenic phase due to the low acetogenic rate of propionic acid, and hence low wastewater treatment efficiency. The reasons for propionic acid accumulation in the acidogenic phase and the relationshi...

Full description

Saved in:
Bibliographic Details
Published in:Biomass & bioenergy Vol. 30; no. 2; pp. 177 - 182
Main Authors: Wang, L., Zhou, Q., Li, F.T.
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01-02-2006
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The accumulation of propionic acid in the anaerobic process will result in low efficiency of the methanogenic phase due to the low acetogenic rate of propionic acid, and hence low wastewater treatment efficiency. The reasons for propionic acid accumulation in the acidogenic phase and the relationship between the accumulation and biohydrogen generation were studied and a strategy for avoiding propionic acid accumulation in the anaerobic process for biohydrogen generation is also introduced. The experimental results indicate that changing pH and oxidation–reduction potential (ORP) can result in the variation of fermentation type, and maintaining lower ORP and avoiding pH of 5.5 will reduce the accumulation of propionic acid in the anaerobic process. Higher biohydrogen generation rate is not always accompanied with the accumulation of propionic acid. In the acidogenic reactor of two-phase separated anaerobic process, ethanol type fermentation, in which pH at 4.5 below, can produce much more biohydrogen but without accumulation of propionic acid. Thus, ethanol-type fermentation is a better selection when using an acidogenic reactor of a two-phase separated anaerobic process to efficiently produce biohydrogen with simultaneous organic wastewater pre-treatment.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0961-9534
1873-2909
DOI:10.1016/j.biombioe.2005.11.010