Microstructural and physicochemical properties of biodegradable films developed from false banana (Ensete ventricosum) starch
The recent trend in starch research is the exploration of potential applications of starches from under-utilized sources. Properties of edible biodegradable films developed from ensete ‘false banana’ (Ensete ventricosum) starch with glycerol as plasticizer were evaluated in this study. Microstructur...
Saved in:
Published in: | Heliyon Vol. 8; no. 3; p. e09148 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-03-2022
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The recent trend in starch research is the exploration of potential applications of starches from under-utilized sources. Properties of edible biodegradable films developed from ensete ‘false banana’ (Ensete ventricosum) starch with glycerol as plasticizer were evaluated in this study. Microstructural examination revealed presence of pores which were gaining prominence with increasing glycerol content while FTIR analysis showed the presence of protein groups characteristic bands and existence of interactions between molecules (glycerol, starch, amide groups and water) in the polymerics. These revelations have profound effect on functional, mechanical and optical properties of the films. Thickness (156.70–189.00 μm), density (1.95–2.44 g/cm3), swelling power (84.49–102.26%), water solubility (17.07–22.32%), water vapor permeability (1.40 × 10−8-1.98 × 10−8 g/m s Pa), lightness ‘l∗’ (39.01–43.86) and energy difference (39.02–43.87) of the film were increasing with increasing glycerol content. The increase was significant (p < 0.05) with swelling power and water solubility, while puncture force (570.83–252.90 g) and film transparency (78.17–51.65%) decreased significantly (p < 0.05) with increasing glycerol content. X-ray diffraction revealed combination of C-type and processing induced VH diffraction patterns. The results of this study exposed the promising potential of ensete starch for development of films and coatings for different packaging requirements.
Ensete; False banana; Biodegradable films; FTIR; Packaging. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2022.e09148 |