Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling
The adaptor molecule stimulator of IFN genes (STING) is central to production of type I IFNs in response to infection with DNA viruses and to presence of host DNA in the cytosol. Excessive release of type I IFNs through STING-dependent mechanisms has emerged as a central driver of several interferon...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 115; no. 33; pp. E7768 - E7775 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
National Academy of Sciences
14-08-2018
|
Series: | PNAS Plus |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The adaptor molecule stimulator of IFN genes (STING) is central to production of type I IFNs in response to infection with DNA viruses and to presence of host DNA in the cytosol. Excessive release of type I IFNs through STING-dependent mechanisms has emerged as a central driver of several interferonopathies, including systemic lupus erythematosus (SLE), Aicardi–Goutières syndrome (AGS), and stimulator of IFN genes-associated vasculopathy with onset in infancy (SAVI). The involvement of STING in these diseases points to an unmet need for the development of agents that inhibit STING signaling. Here, we report that endogenously formed nitro-fatty acids can covalently modify STING by nitro-alkylation. These nitro-alkylations inhibit STING palmitoylation, STING signaling, and subsequently, the release of type I IFN in both human and murine cells. Furthermore, treatment with nitro-fatty acids was sufficient to inhibit production of type I IFN in fibroblasts derived from SAVI patients with a gain-of-function mutation in STING. In conclusion, we have identified nitro-fatty acids as endogenously formed inhibitors of STING signaling and propose for these lipids to be considered in the treatment of STING-dependent inflammatory diseases. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: A.L.H., T.J.M., T.T., F.J.S., D.O., and C.K.H. designed research; A.L.H., G.J.B., M.R., K.M., S.R.S., E.O., S.D.A., M.B.I., A.L.T., C.G., C.T.M., A.S.J., J. Roos, R.L., C.A.M., W.Q., J.J.M., T.T., F.J.S., D.O., and C.K.H. performed research; M.M., K.A.F., R.G.-M., R.E.R., J. Rehwinkel, M.R.J., H.A., T.T., and F.J.S. contributed new reagents/analytic tools; A.L.H., G.J.B., M.R., K.M., S.R.S., E.O., J. Roos, R.L., C.A.M., J.J.M., T.T., F.J.S., D.O., and C.K.H. analyzed data; and A.L.H., D.O., and C.K.H. wrote the paper. Edited by Daniel B. Stetson, University of Washington, Seattle, WA, and accepted by Editorial Board Member Ruslan Medzhitov July 3, 2018 (received for review April 11, 2018) |
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1806239115 |