RC3/neurogranin negatively regulates extracellular signal-regulated kinase pathway through its interaction with Ras

RC3/neurogranin is a postsynaptic protein and plays pivotal roles in spatial learning and emotional anxiety as well as synaptic plasticity. The expression level of RC3 is dynamically changed during developmental stages, but the function of RC3 in brain development is not well understood yet. Neurotr...

Full description

Saved in:
Bibliographic Details
Published in:Molecular and cellular biochemistry Vol. 402; no. 1-2; pp. 33 - 40
Main Authors: Ryoo, Kanghyun, Hwang, Sang-gil, Kim, Kwang Je, Choi, Eui-Ju
Format: Journal Article
Language:English
Published: Boston Springer US 01-04-2015
Springer
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:RC3/neurogranin is a postsynaptic protein and plays pivotal roles in spatial learning and emotional anxiety as well as synaptic plasticity. The expression level of RC3 is dynamically changed during developmental stages, but the function of RC3 in brain development is not well understood yet. Neurotrophins interact with tropomyosin-related kinase receptors to activate Ras–extracellular signal-regulated kinase (ERK) pathway and can also induce neuronal differentiation. In this study, we demonstrate that RC3 inhibits Ras–ERK pathway by interaction with Ras and controls neurite outgrowth induced by neurotrophins. In PC12 cells, RC3 inhibits nerve growth factor (NGF)-induced activation of Ras and thereby ERK1/2 signaling cascade as well as neurite outgrowth induced by NGF. We found Ras is the target of the inhibitory function of RC3, because RC3 interacts with Ras and suppresses the elevated affinity of Ras to Ras-binding domain of Raf-1. Meanwhile, already activated Raf-1 by Ras activity is not affected by RC3. Furthermore, depletion of RC3 by RNA interference drastically enhances the stimulation of ERK1/2 and neurite outgrowth induced by brain-derived neurotrophic factor in hippocampal neurons. These findings suggest that RC3 is a novel natural inhibitor of Ras-ERK1/2 signaling axis, leading to negatively regulate neuronal differentiation induced by neurotrophins.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0300-8177
1573-4919
DOI:10.1007/s11010-014-2311-0