Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica

The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 8; pp. 3996 - 4006
Main Authors: Turney, Chris S. M., Fogwill, Christopher J., Golledge, Nicholas R., McKay, Nicholas P., van Sebille, Erik, Jones, Richard T., Etheridge, David, Rubino, Mauro, Thornton, David P., Davies, Siwan M., Ramsey, Christopher Bronk, Thomas, Zoe A., Bird, Michael I., Munksgaard, Niels C., Kohno, Mika, Woodward, John, Winter, Kate, Weyrich, Laura S., Rootes, Camilla M., Millman, Helen, Albert, Paul G., Rivera, Andres, van Ommen, Tas, Curran, Mark, Moy, Andrew, Rahmstorf, Stefan, Kawamura, Kenji, Hillenbrand, Claus-Dieter, Weber, Michael E., Manning, Christina J., Young, Jennifer, Cooper, Alan
Format: Journal Article
Language:English
Published: United States National Academy of Sciences 25-02-2020
Series:PNAS Plus
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (+6 to 9 m) relative to present day. LIG sea level cannot be fully explained by Greenland Ice Sheet melt (~2 m), ocean thermal expansion, and melting mountain glaciers (~1 m), suggesting substantial Antarctic mass loss was initiated by warming of Southern Ocean waters, resulting from a weakening Atlantic meridional overturning circulation in response to North Atlantic surface freshening. Here, we report a blue-ice record of ice sheet and environmental change from theWeddell Sea Embayment at the periphery of the marine-based West Antarctic Ice Sheet (WAIS), which is underlain by majormethane hydrate reserves. Constrained by awidespread volcanic horizon and supported by ancient microbial DNA analyses, we provide evidence for substantial mass loss across the Weddell Sea Embayment during the LIG, most likely driven by ocean warming and associated with destabilization of subglacial hydrates. Ice sheet modeling supports this interpretation and suggests that millennial-scale warming of the Southern Ocean could have triggered a multimeter rise in global sea levels. Our data indicate that Antarctica is highly vulnerable to projected increases in ocean temperatures and may drive ice–climate feedbacks that further amplify warming.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
2Deceased February 6, 2018.
Edited by Johannes Sutter, University of Bern, Bern, Switzerland, and accepted by Editorial Board Member Jean Jouzel December 27, 2019 (received for review February 11, 2019)
Author contributions: C.S.M.T., C.J.F., and N.R.G. designed research; C.S.M.T., C.J.F., N.R.G., N.P.M., E.v.S., R.T.J., D.E., M.R., D.P.T., S.M.D., C.B.R., Z.A.T., M.I.B., N.C.M., M.K., J.W., K.W., L.S.W., C.M.R., H.M., P.G.A., A.R., A.M., C.-D.H., M.E.W., C.J.M., J.Y., and A.C. performed research; L.S.W. and A.C. contributed new reagents/analytic tools; C.S.M.T., C.J.F., N.R.G., N.P.M., E.v.S., R.T.J., D.E., M.R., S.M.D., C.B.R., Z.A.T., M.I.B., N.C.M., M.K., J.W., K.W., L.S.W., P.G.A., T.v.O., M.C., A.M., S.R., K.K., C.-D.H., M.E.W., and A.C. analyzed data; and C.S.M.T. wrote the paper with input from all authors.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1902469117