The influence of nutrient enrichment on riverine food web function and stability

Nutrient enrichment of rivers and lakes has been increasing rapidly over the past few decades, primarily because of agricultural intensification. Although nutrient enrichment is known to drive excessive algal and microbial growth, which can directly and indirectly change the ecological community com...

Full description

Saved in:
Bibliographic Details
Published in:Ecology and evolution Vol. 11; no. 2; pp. 942 - 954
Main Authors: Canning, Adam D., Death, Russell G.
Format: Journal Article
Language:English
Published: England John Wiley & Sons, Inc 01-01-2021
John Wiley and Sons Inc
Wiley
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nutrient enrichment of rivers and lakes has been increasing rapidly over the past few decades, primarily because of agricultural intensification. Although nutrient enrichment is known to drive excessive algal and microbial growth, which can directly and indirectly change the ecological community composition, the resulting changes in food web emergent properties are poorly understood. We used ecological network analysis (ENA) to examine the emergent properties of 12 riverine food webs across a nutrient enrichment gradient in the Manawatu, New Zealand. We also derive Keystone Sensitivity Indices to explore whether nutrients change the trophic importance of species in a way that alters the resilience of the communities to further nutrient enrichment or floods. Nutrient enrichment resulted in communities composed of energy inefficient species with high community (excluding microbes) respiration. Community respiration was several times greater in enriched communities, and this may drive hypoxic conditions even without concomitant changes in microbial respiration. Enriched communities exhibited weaker trophic cascades, which may yield greater robustness to energy flow loss. Interestingly, enriched communities were also more structurally and functionally affected by species sensitive to flow disturbance making these communities more vulnerable to floods. The food webs of rivers across a nutrient gradient were examined. Enriched webs are likely to be more stable to random disturbances, but less stable to disturbance from floods or further nutrient enrichment. Enriched webs were also composed of relatively inefficient species that showed substantially greater community respiration.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-7758
2045-7758
DOI:10.1002/ece3.7107