Investigating magnetic susceptibility of human knee joint at 7 Tesla

Purpose To evaluate the magnetic susceptibility properties of different anatomical structures within the knee joint using quantitative susceptibility mapping (QSM). Methods A collagen tissue model was simulated and ex vivo animal cartilage experiments were conducted at 9.4 Tesla (T) to evaluate the...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine Vol. 78; no. 5; pp. 1933 - 1943
Main Authors: Wei, Hongjiang, Dibb, Russell, Decker, Kyle, Wang, Nian, Zhang, Yuyao, Zong, Xiaopeng, Lin, Weili, Nissman, Daniel B., Liu, Chunlei
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01-11-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose To evaluate the magnetic susceptibility properties of different anatomical structures within the knee joint using quantitative susceptibility mapping (QSM). Methods A collagen tissue model was simulated and ex vivo animal cartilage experiments were conducted at 9.4 Tesla (T) to evaluate the B0 orientation‐dependent magnetic susceptibility contrast observed in cartilage. Furthermore, nine volunteers (six healthy subjects without knee pain history and three patients with known knee injury, between 29 and 58 years old) were scanned using gradient‐echo acquisitions on a high‐field 7T MR scanner. Susceptibility values of different tissues were quantified and diseased cartilage and meniscus were compared against that of healthy volunteers. Results Simulation and ex vivo animal cartilage experiments demonstrated that collagen fibrils exhibit an anisotropic susceptibility. A gradual change of magnetic susceptibility was observed in the articular cartilage from the superficial zone to the deep zone, forming a multilayer ultrastructure consistent with anisotropy of collagen fibrils. Meniscal tears caused a clear reduction of susceptibility contrast between the injured meniscus and surrounding cartilage illustrated by a loss of the sharp boundaries between the two. Moreover, QSM showed more dramatic contrast in the focal degenerated articular cartilage than R2* mapping. Conclusion The arrangement of the collagen fibrils is significant, and likely the most dominant source of magnetic susceptibility anisotropy. Quantitative susceptibility mapping offers a means to characterize magnetic susceptibility properties of tissues in the knee joint. It is sensitive to collagen damage or degeneration and may be useful for evaluating the status of knee diseases, such as meniscal tears and cartilage disease. Magn Reson Med 78:1933–1943, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Bibliography:This study was supported in part by the National Institutes of Health through grants NIMH R01MH096979 and NINDS R01NS079653.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0740-3194
1522-2594
DOI:10.1002/mrm.26596