A single hole spin with enhanced coherence in natural silicon

Semiconductor spin qubits based on spin–orbit states are responsive to electric field excitations, allowing for practical, fast and potentially scalable qubit control. Spin electric susceptibility, however, renders these qubits generally vulnerable to electrical noise, which limits their coherence t...

Full description

Saved in:
Bibliographic Details
Published in:Nature nanotechnology Vol. 17; no. 10; pp. 1072 - 1077
Main Authors: Piot, N., Brun, B., Schmitt, V., Zihlmann, S., Michal, V. P., Apra, A., Abadillo-Uriel, J. C., Jehl, X., Bertrand, B., Niebojewski, H., Hutin, L., Vinet, M., Urdampilleta, M., Meunier, T., Niquet, Y.-M., Maurand, R., Franceschi, S. De
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01-10-2022
Nature Publishing Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Semiconductor spin qubits based on spin–orbit states are responsive to electric field excitations, allowing for practical, fast and potentially scalable qubit control. Spin electric susceptibility, however, renders these qubits generally vulnerable to electrical noise, which limits their coherence time. Here we report on a spin–orbit qubit consisting of a single hole electrostatically confined in a natural silicon metal-oxide-semiconductor device. By varying the magnetic field orientation, we reveal the existence of operation sweet spots where the impact of charge noise is minimized while preserving an efficient electric-dipole spin control. We correspondingly observe an extension of the Hahn-echo coherence time up to 88 μs, exceeding by an order of magnitude existing values reported for hole spin qubits, and approaching the state-of-the-art for electron spin qubits with synthetic spin–orbit coupling in isotopically purified silicon. Our finding enhances the prospects of silicon-based hole spin qubits for scalable quantum information processing. Operation sweet spots decouple hole spin qubits in silicon from charge noise while conserving full electrical control and allowing for spin coherence times of up to 88 μs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1748-3387
1748-3395
1748-3395
DOI:10.1038/s41565-022-01196-z