A heparin-mimicking polymer conjugate stabilizes basic fibroblast growth factor

Basic fibroblast growth factor (bFGF) is a protein that plays a crucial role in diverse cellular functions, from wound healing to bone regeneration. However, a major obstacle to the widespread application of bFGF is its inherent instability during storage and delivery. Here, we describe the stabiliz...

Full description

Saved in:
Bibliographic Details
Published in:Nature chemistry Vol. 5; no. 3; pp. 221 - 227
Main Authors: Nguyen, Thi H., Kim, Sung-Hye, Decker, Caitlin G., Wong, Darice Y., Loo, Joseph A., Maynard, Heather D.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01-03-2013
Nature Publishing Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Basic fibroblast growth factor (bFGF) is a protein that plays a crucial role in diverse cellular functions, from wound healing to bone regeneration. However, a major obstacle to the widespread application of bFGF is its inherent instability during storage and delivery. Here, we describe the stabilization of bFGF by covalent conjugation with a heparin-mimicking polymer, a copolymer consisting of styrene sulfonate units and methyl methacrylate units bearing poly(ethylene glycol) side chains. The bFGF conjugate of this polymer retained bioactivity after synthesis and was stable to a variety of environmentally and therapeutically relevant stressors—such as heat, mild and harsh acidic conditions, storage and proteolytic degradation—unlike native bFGF. Following the application of stress, the conjugate was also significantly more active than the control conjugate system in which the styrene sulfonate units were omitted from the polymer structure. This research has important implications for the clinical use of bFGF and for the stabilization of heparin-binding growth factors in general. Basic fibroblast growth factor (bFGF) is crucial for a range of diverse cellular processes, from wound healing to bone regeneration, yet is inherently unstable. This important biologic has now been covalently linked to a polymer that mimics the polysaccharide heparin to produce a conjugate that shows remarkable stability to a wide range of therapeutically and environmentally relevant stressors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1755-4330
1755-4349
DOI:10.1038/nchem.1573