Snf2h-mediated chromatin organization and histone H1 dynamics govern cerebellar morphogenesis and neural maturation

Chromatin compaction mediates progenitor to post-mitotic cell transitions and modulates gene expression programs, yet the mechanisms are poorly defined. Snf2h and Snf2l are ATP-dependent chromatin remodelling proteins that assemble, reposition and space nucleosomes, and are robustly expressed in the...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 5; no. 1; p. 4181
Main Authors: Alvarez-Saavedra, Matías, De Repentigny, Yves, Lagali, Pamela S., Raghu Ram, Edupuganti V. S., Yan, Keqin, Hashem, Emile, Ivanochko, Danton, Huh, Michael S., Yang, Doo, Mears, Alan J., Todd, Matthew A. M., Corcoran, Chelsea P., Bassett, Erin A., Tokarew, Nicholas J. A., Kokavec, Juraj, Majumder, Romit, Ioshikhes, Ilya, Wallace, Valerie A., Kothary, Rashmi, Meshorer, Eran, Stopka, Tomas, Skoultchi, Arthur I., Picketts, David J.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 20-06-2014
Nature Publishing Group
Nature Pub. Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chromatin compaction mediates progenitor to post-mitotic cell transitions and modulates gene expression programs, yet the mechanisms are poorly defined. Snf2h and Snf2l are ATP-dependent chromatin remodelling proteins that assemble, reposition and space nucleosomes, and are robustly expressed in the brain. Here we show that mice conditionally inactivated for Snf2h in neural progenitors have reduced levels of histone H1 and H2A variants that compromise chromatin fluidity and transcriptional programs within the developing cerebellum. Disorganized chromatin limits Purkinje and granule neuron progenitor expansion, resulting in abnormal post-natal foliation, while deregulated transcriptional programs contribute to altered neural maturation, motor dysfunction and death. However, mice survive to young adulthood, in part from Snf2l compensation that restores Engrailed-1 expression. Similarly, Purkinje-specific Snf2h ablation affects chromatin ultrastructure and dendritic arborization, but alters cognitive skills rather than motor control. Our studies reveal that Snf2h controls chromatin organization and histone H1 dynamics for the establishment of gene expression programs underlying cerebellar morphogenesis and neural maturation. The chromatin remodelling proteins Snf2h and Snf2l regulate nucleosome spacing. Here, the authors show that Snf2h ablation impairs chromatin organization of neuronal lineages during mouse embryonic and post-natal cerebellar development.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms5181