Effect of pore morphology of mesoporous carbons on the electrocatalytic activity of Pt nanoparticles for fuel cell reactions

In the present investigation, the role of the pore morphology of mesoporous carbons in the electrocatalytic activity of Pt nanoparticles for fuel cell reactions has been successfully revealed by adopting ordered mesoporous carbon CMK-3 and disordered wormhole-like mesoporous carbon (WMC) as the supp...

Full description

Saved in:
Bibliographic Details
Published in:Applied catalysis. B, Environmental Vol. 98; no. 3-4; pp. 132 - 137
Main Authors: Song, Shuqin, Liang, Yeru, Li, Zhenghui, Wang, Yi, Fu, Ruowen, Wu, Dingcai, Tsiakaras, Panagiotis
Format: Journal Article
Language:English
Published: Kidlington Elsevier B.V 01-08-2010
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present investigation, the role of the pore morphology of mesoporous carbons in the electrocatalytic activity of Pt nanoparticles for fuel cell reactions has been successfully revealed by adopting ordered mesoporous carbon CMK-3 and disordered wormhole-like mesoporous carbon (WMC) as the support material, respectively. Both materials possess very similar pore characteristics (pore volume, BET surface area, mesopore size) except pore morphology. It has been found that CMK-3 can provide Pt nanoparticles with more electrochemically active Pt sites and higher electrochemical surface area, and thus, Pt/CMK-3 exhibits superior fuel cell reactions activity compared to Pt/WMC, especially in the case of liquid reactants (e.g. ethanol). This could be attributed to the much easier mass transportation through CMK-3 support profiting from both the high ordered degree and the very good 3D interconnection of the nano-spacings of their hexagonally arrayed carbon nanorods (i.e. mesopores), thus leading to more accessibility of Pt nanoparticles. The above results demonstrates that the pore morphology of carbon supports plays a decisive role in the electrocatalytic activity of their supported Pt nanoparticles, although other structure parameters like pore size are very similar.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0926-3373
1873-3883
DOI:10.1016/j.apcatb.2010.05.021