Demonstration of a Tunable Microwave-Photonic Notch Filter Using Low-Loss Silicon Ring Resonators

We present a fully tunable multistage narrowband optical pole-zero notch filter that is fabricated in a silicon complementary metal oxide semiconductor (CMOS) foundry. The filter allows for the reconfigurable and independent tuning of the center frequency, null depth, and bandwidth for one or more n...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology Vol. 27; no. 12; pp. 2105 - 2110
Main Authors: Rasras, M.S., Kun-Yii Tu, Gill, D.M., Young-Kai Chen, White, A.E., Patel, S.S., Pomerene, A., Carothers, D., Beattie, J., Beals, M., Michel, J., Kimerling, L.C.
Format: Journal Article
Language:English
Published: New York, NY IEEE 15-06-2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a fully tunable multistage narrowband optical pole-zero notch filter that is fabricated in a silicon complementary metal oxide semiconductor (CMOS) foundry. The filter allows for the reconfigurable and independent tuning of the center frequency, null depth, and bandwidth for one or more notches simultaneously. It is constructed using a Mach-Zehnder interferometer (MZI) with cascaded tunable all-pass filter (APF) ring resonators in its arms. Measured filter nulling response exhibits ultranarrow notch 3 dB BW of 0.6350 GHz, and nulling depth of 33 dB. This filter is compact and integrated in an area of 1.75 mm 2 . Using this device, a novel method to cancel undesired bands of 3 dB bandwidth of < 910 MHz in microwave-photonic systems is demonstrated. The ultranarrow filter response properties have been realized based on our developed low-propagation loss silicon channel waveguide and tunable ring-resonator designs. Experimentally, they yielded a loss of 0.25 dB/cm and 0.18 dB/round trip, respectively.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2008.2007748