TurboPixels: Fast Superpixels Using Geometric Flows

We describe a geometric-flow-based algorithm for computing a dense oversegmentation of an image, often referred to as superpixels. It produces segments that, on one hand, respect local image boundaries, while, on the other hand, limiting undersegmentation through a compactness constraint. It is very...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 31; no. 12; pp. 2290 - 2297
Main Authors: Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi, K.
Format: Journal Article
Language:English
Published: Los Alamitos, CA IEEE 01-12-2009
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We describe a geometric-flow-based algorithm for computing a dense oversegmentation of an image, often referred to as superpixels. It produces segments that, on one hand, respect local image boundaries, while, on the other hand, limiting undersegmentation through a compactness constraint. It is very fast, with complexity that is approximately linear in image size, and can be applied to megapixel sized images with high superpixel densities in a matter of minutes. We show qualitative demonstrations of high-quality results on several complex images. The Berkeley database is used to quantitatively compare its performance to a number of oversegmentation algorithms, showing that it yields less undersegmentation than algorithms that lack a compactness constraint while offering a significant speedup over N-cuts, which does enforce compactness.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0162-8828
1939-3539
DOI:10.1109/TPAMI.2009.96