Analyzing neural responses to natural signals: maximally informative dimensions
We propose a method that allows for a rigorous statistical analysis of neural responses to natural stimuli that are nongaussian and exhibit strong correlations. We have in mind a model in which neurons are selective for a small number of stimulus dimensions out of a high-dimensional stimulus space,...
Saved in:
Published in: | Neural computation Vol. 16; no. 2; p. 223 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-02-2004
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a method that allows for a rigorous statistical analysis of neural responses to natural stimuli that are nongaussian and exhibit strong correlations. We have in mind a model in which neurons are selective for a small number of stimulus dimensions out of a high-dimensional stimulus space, but within this subspace the responses can be arbitrarily nonlinear. Existing analysis methods are based on correlation functions between stimuli and responses, but these methods are guaranteed to work only in the case of gaussian stimulus ensembles. As an alternative to correlation functions, we maximize the mutual information between the neural responses and projections of the stimulus onto low-dimensional subspaces. The procedure can be done iteratively by increasing the dimensionality of this subspace. Those dimensions that allow the recovery of all of the information between spikes and the full unprojected stimuli describe the relevant subspace. If the dimensionality of the relevant subspace indeed is small, it becomes feasible to map the neuron's input-output function even under fully natural stimulus conditions. These ideas are illustrated in simulations on model visual and auditory neurons responding to natural scenes and sounds, respectively. |
---|---|
ISSN: | 0899-7667 |
DOI: | 10.1162/089976604322742010 |