Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging
A rapid, noninvasive technique involving imaging of chlorophyll fluorescence parameters for detecting perturbations of leaf metabolism and growth in seedlings is described. Arabidopsis seedlings were grown in 96-well microtitre plates for 4 d and then treated with eight herbicides with differing mod...
Saved in:
Published in: | Plant physiology (Bethesda) Vol. 132; no. 2; pp. 485 - 493 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Rockville, MD
American Society of Plant Biologists
01-06-2003
American Society of Plant Physiologists |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A rapid, noninvasive technique involving imaging of chlorophyll fluorescence parameters for detecting perturbations of leaf metabolism and growth in seedlings is described. Arabidopsis seedlings were grown in 96-well microtitre plates for 4 d and then treated with eight herbicides with differing modes of action to induce perturbations in a range of different metabolic processes. Imaging of chlorophyll fluorescence emissions from 96 seedlings growing on a microtitre plate enabled images of a number of fluorescence parameters to be rapidly and simultaneously produced for the plants in each well. Herbicide-induced perturbations in metabolism, even in metabolic reactions not directly associated with photosynthetic metabolism, were detected from the changes in the images of fluorescence parameters considerably before any visual effects on seedling growth were observed. Evaluations of seedling growth were made from measurements of the area of chlorophyll fluorescence emission in images of plants growing in the 96-well plates. Decreased seedling growth related directly to herbicide-induced changes in the imaged chlorophyll fluorescence parameters. The applicability of this rapid-screening technique for metabolic perturbations in monocotyledonous species was demonstrated by treating Agrostis tenuis seedlings with Imazapyr, an inhibitor of branched-chain amino acid synthesis. |
---|---|
Bibliography: | http://www.plantphysiol.org/ |
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1104/pp.102.018093 |