Effects of chlorogenic acid, caffeine, and coffee on behavioral and biochemical parameters of diabetic rats
Diabetes mellitus (DM) is associated with brain alterations that may contribute to cognitive dysfunctions. Chlorogenic acid (CGA) and caffeine (CA), abundant in coffee (CF), are natural compounds that have showed important actions in the brain. The present study aimed to evaluate the effect of CGA,...
Saved in:
Published in: | Molecular and cellular biochemistry Vol. 388; no. 1-2; pp. 277 - 286 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Boston
Springer US
01-03-2014
Springer Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Diabetes mellitus (DM) is associated with brain alterations that may contribute to cognitive dysfunctions. Chlorogenic acid (CGA) and caffeine (CA), abundant in coffee (CF), are natural compounds that have showed important actions in the brain. The present study aimed to evaluate the effect of CGA, CA, and CF on acetylcholinesterase (AChE), Na
+
, K
+
-ATPase, aminolevulinate dehydratase (δ-ALA-D) activities and TBARS levels from cerebral cortex, as well as memory and anxiety in streptozotocin-induced diabetic rats. Animals were divided into eight groups (
n
= 5–10): control; control/CGA 5 mg/kg; control/CA 15 mg/kg; control/CF 0.5 g/kg; diabetic; diabetic/CGA 5 mg/kg; diabetic/CA 15 mg/kg; and diabetic/CF 0.5 g/kg. Our results demonstrated an increase in AChE activity and TBARS levels in cerebral cortex, while δ-ALA-D and Na
+
, K
+
-ATPase activities were decreased in the diabetic rats when compared to control water group. Furthermore, a memory deficit and an increase in anxiety in diabetic rats were observed. The treatment with CGA and CA prevented the increase in AChE activity in diabetic rats when compared to the diabetic water group. CGA, CA, and CF intake partially prevented cerebral δ-ALA-D and Na
+
, K
+
-ATPase activity decrease due to diabetes. Moreover, CGA prevented diabetes-induced TBARS production, improved memory, and decreased anxiety. In conclusion, among the compounds studied CGA proved to be a compound which acts better in the prevention of brain disorders promoted by DM. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0300-8177 1573-4919 |
DOI: | 10.1007/s11010-013-1919-9 |