Evolution of plant p-type ATPases
Five organisms having completely sequenced genomes and belonging to all major branches of green plants (Viridiplantae) were analyzed with respect to their content of P-type ATPases encoding genes. These were the chlorophytes Ostreococcus tauri and Chlamydomonas reinhardtii, and the streptophytes Phy...
Saved in:
Published in: | Frontiers in plant science Vol. 3; p. 31 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
Frontiers Research Foundation
01-01-2012
Frontiers Media S.A |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Five organisms having completely sequenced genomes and belonging to all major branches of green plants (Viridiplantae) were analyzed with respect to their content of P-type ATPases encoding genes. These were the chlorophytes Ostreococcus tauri and Chlamydomonas reinhardtii, and the streptophytes Physcomitrella patens (a non-vascular moss), Selaginella moellendorffii (a primitive vascular plant), and Arabidopsis thaliana (a model flowering plant). Each organism contained sequences for all five subfamilies of P-type ATPases. Whereas Na(+) and H(+) pumps seem to mutually exclude each other in flowering plants and animals, they co-exist in chlorophytes, which show representatives for two kinds of Na(+) pumps (P2C and P2D ATPases) as well as a primitive H(+)-ATPase. Both Na(+) and H(+) pumps also co-exist in the moss P. patens, which has a P2D Na(+)-ATPase. In contrast to the primitive H(+)-ATPases in chlorophytes and P. patens, the H(+)-ATPases from vascular plants all have a large C-terminal regulatory domain as well as a conserved Arg in transmembrane segment 5 that is predicted to function as part of a backflow protection mechanism. Together these features are predicted to enable H(+) pumps in vascular plants to create large electrochemical gradients that can be modulated in response to diverse physiological cues. The complete inventory of P-type ATPases in the major branches of Viridiplantae is an important starting point for elucidating the evolution in plants of these important pumps. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Jin Chen, Michigan State University, USA; Manuel González-Guerrero, Universidad Politécnica de Madrid, Spain Edited by: Heven Sze, University of Maryland, USA This article was submitted to Frontiers in Plant Physiology, a specialty of Frontiers in Plant Science. |
ISSN: | 1664-462X 1664-462X |
DOI: | 10.3389/fpls.2012.00031 |