Molecular Ecology of Isoprene-Degrading Bacteria

Isoprene is a highly abundant biogenic volatile organic compound (BVOC) that is emitted to the atmosphere in amounts approximating to those of methane. The effects that isoprene has on Earth's climate are both significant and complex, however, unlike methane, very little is known about the biol...

Full description

Saved in:
Bibliographic Details
Published in:Microorganisms (Basel) Vol. 8; no. 7; p. 967
Main Authors: Carrión, Ornella, McGenity, Terry J, Murrell, J Colin
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 27-06-2020
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Isoprene is a highly abundant biogenic volatile organic compound (BVOC) that is emitted to the atmosphere in amounts approximating to those of methane. The effects that isoprene has on Earth's climate are both significant and complex, however, unlike methane, very little is known about the biological degradation of this environmentally important trace gas. Here, we review the mechanisms by which bacteria catabolise isoprene, what is known about the diversity of isoprene degraders in the environment, and the molecular tools currently available to study their ecology. Specifically, we focus on the use of probes based on the gene encoding the α-subunit of isoprene monooxygenase, , and DNA stable-isotope probing (DNA-SIP) alone or in combination with other cultivation-independent techniques to determine the abundance, diversity, and activity of isoprene degraders in the environment. These parameters are essential in order to evaluate how microbes might mitigate the effects of this important but neglected climate-active gas. We also suggest key aspects of isoprene metabolism that require further investigation in order to better understand the global isoprene biogeochemical cycle.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:2076-2607
2076-2607
DOI:10.3390/microorganisms8070967