Dioxygen is the source of the mu-oxo bridge in iron ribonucleotide reductase

The formation of the iron-radical cofactor in the R2 subunit of ribonucleotide reductase has been monitored by resonance Raman spectroscopy. The differrous cluster in reduced R2 functions as a tyrosine oxidase; it uses O2 to oxidize Tyr-122 to a stable radical and results in an oxo-bridged diferric...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry Vol. 269; no. 8; pp. 5595 - 5601
Main Authors: JINSHU LING, SAHLIN, M, SJÖBERG, B.-M, LOEHR, T. M, SANDERS-LOEHR, J
Format: Journal Article
Language:English
Published: Bethesda, MD American Society for Biochemistry and Molecular Biology 25-02-1994
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The formation of the iron-radical cofactor in the R2 subunit of ribonucleotide reductase has been monitored by resonance Raman spectroscopy. The differrous cluster in reduced R2 functions as a tyrosine oxidase; it uses O2 to oxidize Tyr-122 to a stable radical and results in an oxo-bridged diferric cluster. The Phe-122 mutant produces an identical dinuclear iron center and provides a simplified model for O2 activation. Oxidation with 18O2 results in quantitative incorporation of 18O into the diferric cluster as evidenced by the 13-cm-1 downshift in the Fe-O-Fe stretching vibration at 500 cm-1. Thus, O2 must be coordinated to the diiron center during O-O bond cleavage. When the Phe-208 adjacent to the diferous cluster is mutated to Tyr, reaction with O2 results in its oxidation to dihydroxyphenylalanine (DOPA-208) and subsequent coordination to Fe as a catecholate ligand. The Fe-O/(catecholate) stretching modes at 512 and 592 cm-1 shift by -13 and -8 cm-1, respectively, when the oxidation is performed in H(2)18O. These isotope shifts indicate that the second oxygen atom of DOPA-208 originates from H2O rather than O2. Taken together, our results are consistent with a mu-1,1-peroxide and a high valent iron-oxo species as reaction intermediates. A common pathway for oxygen activation by the related iron-oxo enzymes methane monooxygenase and fatty acid desaturase is proposed.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
1083-351X
DOI:10.1016/s0021-9258(17)37503-8