Effect of open gap in coastal forest on tsunami run-up—investigations by experiment and numerical simulation

The objective of this study is to investigate the effects of an open gap, such as a road, in a coastal forest on tsunami run-up. A numerical model based on two-dimensional nonlinear long-wave equations was developed to account for the effects of drag and turbulence induced shear forces due to the pr...

Full description

Saved in:
Bibliographic Details
Published in:Ocean engineering Vol. 36; no. 15; pp. 1258 - 1269
Main Authors: Ba Thuy, Nguyen, Tanimoto, Katsutoshi, Tanaka, Norio, Harada, Kenji, Iimura, Kosuke
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01-11-2009
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this study is to investigate the effects of an open gap, such as a road, in a coastal forest on tsunami run-up. A numerical model based on two-dimensional nonlinear long-wave equations was developed to account for the effects of drag and turbulence induced shear forces due to the presence of vegetation. Experiments were conducted on a forest simulated with vertical cylinders by changing the gap width. The numerical model was validated in good agreement with the experimental results. The numerical model was then applied to a wide forest of Pandanus odoratissimus, a tree species that is a dominant coastal vegetation on a sand dune in South and Southeast Asia. The effect of vertical stand characteristics of P. odoratissimus with aerial roots was considered on the drag resistance. A straight open gap perpendicular to the shoreline was used to investigate the effect of gap width. As the gap width increases, the flow velocity at the end of the open gap first increases, reaches a maximum, and then decreases, while the run-up height increases monotonously. The maximum velocity in the present condition is 1.7 times the maximum velocity without a coastal forest. The effects of different gap arrangements in the forest on tsunami run-up were also investigated in this paper. The flow velocity at the end of an open gap can be reduced by a staggered arrangement.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0029-8018
1873-5258
DOI:10.1016/j.oceaneng.2009.07.006