Independent acoustic variation of the higher- and lower-frequency components of biphonic calls can facilitate call recognition and social affiliation in killer whales

Each resident-type (R-type) killer whale pod has a set of stereotyped calls that are culturally transmitted from mother to offspring. The functions of particular call types are not yet clearly understood, but it is believed that calls with two independently modulated frequency components (biphonic c...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 15; no. 7; p. e0236749
Main Author: Filatova, Olga A.
Format: Journal Article
Language:English
Published: San Francisco Public Library of Science 30-07-2020
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Each resident-type (R-type) killer whale pod has a set of stereotyped calls that are culturally transmitted from mother to offspring. The functions of particular call types are not yet clearly understood, but it is believed that calls with two independently modulated frequency components (biphonic calls) play an important role in pod communication and cohesion at long ranges. In this study we examined the possible functions of biphonic calls in R-type killer whales. First, we tested the hypothesis that the additional component enhances the potential of a call to identify the family affiliation. We found that the similarity patterns of the lower- and higher frequency components across the families were largely unrelated. Calls were classified more accurately to their respective family when both lower- and higher-frequency components were considered. Second, we tested the long-range detectability of the lower- and higher-frequency components. After adjusting the received levels by the killer whale hearing sensitivity to different frequency ranges, the sensation level of the higher-frequency component was higher than the amplitude of the lower-frequency component. Our results suggest that the higher-frequency component of killer whale biphonic calls varies independently of the lower-frequency component, which enhances the efficiency of these calls as family markers. The acoustic variation of the higher-frequency component allows the recognition of family identity of a caller even if the shape of the lower-frequency component accidentally becomes similar in unrelated families. The higher-frequency component can also facilitate family recognition when the lower-frequency component is masked by low-frequency noise.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The author has declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0236749