Effects of Annealing on GaAs/GaAsSbN/GaAs Core-Multi-shell Nanowires
The effects of ex-situ annealing in a N 2 ambient on the properties of GaAs/GaAsSbN/GaAs core-multi-shell nanowires on Si (111) substrate grown by self-catalyzed molecular beam epitaxy (MBE) are reported. As-grown nanowires exhibit band edge emission at ~0.99 eV with a shoulder peak at ~0.85 eV, ide...
Saved in:
Published in: | Nanoscale research letters Vol. 11; no. 1; p. 47 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-12-2016
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effects of
ex-situ
annealing in a N
2
ambient on the properties of GaAs/GaAsSbN/GaAs core-multi-shell nanowires on Si (111) substrate grown by self-catalyzed molecular beam epitaxy (MBE) are reported. As-grown nanowires exhibit band edge emission at ~0.99 eV with a shoulder peak at ~0.85 eV, identified to arise from band tail states. A large red shift of 7 cm
−1
and broadened Raman spectra of as-grown nanowires compared to that of non-nitride nanowires confirmed phonon localization at N-induced localized defects. On annealing nanowires to 750 °C, there was no change in the planar defects in the nanowire with respect to the as-grown nanowire; however, vanishing of the photoluminescence (PL) peak corresponding to band tail states along with enhanced band edge PL intensity, recovery of the Raman shift and increase in the Schottky barrier height from 0.1 to 0.4 eV clearly point to the efficient annihilation of point defects in these GaAsSbN nanowires. A significant reduction in the temperature-induced energy shift in the annealed nanowires is attributed to annihilation of band tail states and weak temperature dependence of N-related localized states. The observation of room temperature PL signal in the 1.3 μm region shows that the strategy of adding small amounts of N to GaAsSb is a promising route to realization of efficient nanoscale light emitters with reduced temperature sensitivity in the telecommunication wavelength region. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1931-7573 1556-276X |
DOI: | 10.1186/s11671-016-1265-4 |