Pre-clinical drug-drug interaction (DDI) of gefitinib or erlotinib with Cytochrome P450 (CYP) inhibiting drugs, fluoxetine and/or losartan
[Display omitted] •In vitro drug-drug interactions (DDIs) can predict drug combination outcomes.•Cytochrome (CYP) P450 and hepatocytes are able to confirm DDIs.•Fluoxetine inhibited CYP metabolism of gefitinib and erlotinib in supersomes.•Hepatocyte metabolism tested here was unaffected by fluoxetin...
Saved in:
Published in: | Current research in toxicology Vol. 2; pp. 217 - 224 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-01-2021
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
•In vitro drug-drug interactions (DDIs) can predict drug combination outcomes.•Cytochrome (CYP) P450 and hepatocytes are able to confirm DDIs.•Fluoxetine inhibited CYP metabolism of gefitinib and erlotinib in supersomes.•Hepatocyte metabolism tested here was unaffected by fluoxetine or losartan alone.•A regimen containing three or more drugs may cause an unexpected DDI (p ≤ 0.05).
To evaluate drug-drug interactions (DDIs) between gefitinib or erlotinib with fluoxetine, and/or losartan.
Human pooled microsomes, supersomes, and cryopreserved human hepatocytes were used to monitor DDIs in vitro. RED (Rapid Equilibrium Dialysis) protein binding was employed to investigate other pharmacokinetics.
Gefitinib is significantly metabolized by Cytochrome P450 (CYP) 2D6 and CYP3A4, with less than 80% of the drug remaining. Erlotinib is significantly metabolized by CYP3A4, CYP2D6, and CYP1A2. Although gefitinib and erlotinib were metabolized by the same CYP isoenzymes, the metabolites formed from degradation of the two drugs were different.
Fluoxetine inhibited CYP2D6 and CYP3A4 metabolism of gefitinib with an IC50 of 65.12 ± 1.88 µM and 4.11 ± 2.26 µM, respectively. Fluoxetine also inhibited CYP2D6 and CYP3A4 metabolism of erlotinib with an IC50 of 7.06 ± 1.54 µM and 4.57 ± 1.22 µM, respectively.
For hepatocytes, fluoxetine affected the metabolism of gefitinib or erlotinib, while losartan had no effect. Gefitinib and erlotinib inhibited the metabolism of fluoxetine and losartan. Two-drug combinations involving gefitinib or erlotinib with fluoxetine or losartan yielded insignificant (p-value ≥ 0.05) differences in metabolism. However, combinations involving three drugs yielded significant degrees of inhibition (p-value ≤ 0.05). Three drug combinations involving fluoxetine and losartan with gefitinib or erlotinib yielded significant degrees of inhibition of the metabolism of gefitinib, but not for that of erlotinib.
As could be predicted by previous studies involving the inhibitory effect of fluoxetine on CYP3A4 and CYP2D6, and studies involving CYP metabolism of gefitinib and erlotinib, the tests performed here confirmed that fluoxetine has an inhibitory effect on metabolism of gefitinib or erlotinib by the main CYP isoenzymes involved. This study suggests a variable inhibitory effect of fluoxetine particularly on CYP2D6 activity towards gefitinib or erlotinib; erlotinib metabolism is less affected. Likewise, the combination of fluoxetine and losartan does not significantly affect hepatocyte metabolism of erlotinib, but does for that of gefitinib. The results presented in this study thus indicate a need for DDI assays to involve multiple drugs to properly study multidrug regimens. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2666-027X 2666-027X |
DOI: | 10.1016/j.crtox.2021.05.006 |