Natural Variation in Plant Pluripotency and Regeneration
Plant regeneration is essential for survival upon wounding and is, hence, considered to be a strong natural selective trait. The capacity of plant tissues to regenerate in vitro, however, varies substantially between and within species and depends on the applied incubation conditions. Insight into t...
Saved in:
Published in: | Plants (Basel) Vol. 9; no. 10; p. 1261 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
24-09-2020
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Plant regeneration is essential for survival upon wounding and is, hence, considered to be a strong natural selective trait. The capacity of plant tissues to regenerate in vitro, however, varies substantially between and within species and depends on the applied incubation conditions. Insight into the genetic factors underlying this variation may help to improve numerous biotechnological applications that exploit in vitro regeneration. Here, we review the state of the art on the molecular framework of de novo shoot organogenesis from root explants in Arabidopsis, which is a complex process controlled by multiple quantitative trait loci of various effect sizes. Two types of factors are distinguished that contribute to natural regenerative variation: master regulators that are conserved in all experimental systems (e.g., WUSCHEL and related homeobox genes) and conditional regulators whose relative role depends on the explant and the incubation settings. We further elaborate on epigenetic variation and protocol variables that likely contribute to differential explant responsivity within species and conclude that in vitro shoot organogenesis occurs at the intersection between (epi) genetics, endogenous hormone levels, and environmental influences. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 2223-7747 2223-7747 |
DOI: | 10.3390/plants9101261 |