A decreased expression of angiopoietin-like 3 is protective against atherosclerosis in apoE-deficient mice

KK/Snk mice (previously KK/San) possessing a recessive mutation (hypl) of the angiopoietin-like 3 (Angptl3) gene homozygously exhibit a marked reduction of VLDL due to the decreased Angptl3 expression. Recently, we proposed that Angptl3 is a new class of lipid metabolism modulator regulating VLDL tr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lipid research Vol. 44; no. 6; pp. 1216 - 1223
Main Authors: Ando, Yosuke, Shimizugawa, Tetsuya, Takeshita, Shigehito, Ono, Mitsuru, Shimamura, Mitsuru, Koishi, Ryuta, Furukawa, Hidehiko
Format: Journal Article
Language:English
Published: United States Elsevier 01-06-2003
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:KK/Snk mice (previously KK/San) possessing a recessive mutation (hypl) of the angiopoietin-like 3 (Angptl3) gene homozygously exhibit a marked reduction of VLDL due to the decreased Angptl3 expression. Recently, we proposed that Angptl3 is a new class of lipid metabolism modulator regulating VLDL triglyceride (TG) levels through the inhibition of lipoprotein lipase (LPL) activity. In this study, to elucidate the role of Angptl3 in atherogenesis, we investigated the effects of hypl mutation against hyperlipidemia and atherosclerosis in apolipoprotein E knockout (apoEKO) mice. ApoEKO mice with hypl mutation (apoEKO-hypl) exhibited a significant reduction of VLDL TG, VLDL cholesterol, and plasma apoB levels compared with apoEKO mice. Hepatic VLDL TG secretion was comparable between both apoE-deficient mice. Turnover studies revealed that the clearance of both [3H]TG-labeled and 125I-labeled VLDL was significantly enhanced in apoEKO-hypl mice. Postprandial plasma TG levels also decreased in apoEKO-hypl mice. Both LPL and hepatic lipase activities in the postheparin plasma increased significantly in apoEKO-hypl mice, explaining the enhanced lipid metabolism. Furthermore, apoEKO-hypl mice developed 3-fold smaller atherogenic lesions in the aortic sinus compared with apoEKO mice. Taken together, the reduction of Angptl3 expression is protective against hyperlipidemia and atherosclerosis, even in the absence of apoE, owing to the enhanced catabolism and clearance of TG-rich lipoproteins.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-2275
DOI:10.1194/jlr.M300031-JLR200