Sustainable Green Pavement Using Bio-Based Polyurethane Binder in Tunnel

As a closed space, the functional requirements of the tunnel pavement are very different from ordinary pavements. In recent years, with the increase of requirements for tunnel pavement safety, comfort and environmental friendliness, asphalt pavement has become more and more widely used in long tunne...

Full description

Saved in:
Bibliographic Details
Published in:Materials Vol. 12; no. 12; p. 1990
Main Authors: Leng, Chao, Lu, Guoyang, Gao, Junling, Liu, Pengfei, Xie, Xiaoguang, Wang, Dawei
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 21-06-2019
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As a closed space, the functional requirements of the tunnel pavement are very different from ordinary pavements. In recent years, with the increase of requirements for tunnel pavement safety, comfort and environmental friendliness, asphalt pavement has become more and more widely used in long tunnels, due to its low noise, low dust, easy maintenance, and good comfort. However, conventional tunnel asphalt pavements cause significant safety and environmental concerns. The innovative polyurethane thin overlay (PTO) has been developed for the maintenance of existing roads and constructing new roads. Based on the previous study, the concept of PTO may be a feasible and effective way to enrich the innovative functions of tunnel pavement. In this paper, the research aims to evaluate the functional properties of PTO, such as noise reduction, solar reflection and especially combustion properties. Conventional asphalt (Open-graded Friction Course (OGFC) and Stone Mastic Asphalt (SMA)) and concrete pavement materials were used as control materials. Compared with conventional tunnel pavement materials, significant improvements were observed in functional properties and environmental performance. Therefore, this innovative wearing layer can potentially provide pavements with new eco-friendly functions. This study provides a comprehensive analysis of these environmentally friendly materials, paving the way for the possible application in tunnels, as well as some other fields, such as race tracks in stadiums.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma12121990